
Simulator Driver

© 2017 PTC Inc. All Rights Reserved.



Simulator Driver

Table of Contents

Simulator Driver 1

Table of Contents 2

Simulator Driver 3

Overview 3

Setup 4

Channel Properties — General 4

Channel Properties — Write Optimizations 5

Channel Properties — Advanced 6

Channel Properties — Persistence 7

Device Properties — General 8

Device Properties — ScanMode 9

Device Properties — Tag Generation 10

Data Types Description 13

Address Descriptions 15

8-Bit Device Addresses 15

16-Bit Device Addresses 16

Simulation Functions 16

Ramp Function 17

Random Function 17

Sine Function 18

User Function 18

Event Log Messages 20

Could not load item state data. Reason: <reason>. 20

Could not save item state data. Reason: <reason>. 20

Index 21

www.ptc.com

2



Simulator Driver

Simulator Driver
Help version 1.036

CONTENTS

Overview
What is the Simulator Driver?

Setup
How do I configure a device for use with this driver?

Data Types Description
What data types can be used with a simulated device?

Address Descriptions
How are addresses specified on a simulated device?

Event Log Messages
What error messages does the Simulator Driver produce?

Overview
The Simulator Driver provides a reliable way to connect Simulator devices to OPC client applications;
including HMI, SCADA, Historian, MES, ERP, and countless custom applications. It is provided for testing the
OPC Server software product without requiring an external device.

www.ptc.com

3



Simulator Driver

Setup
Supported Devices
8-Bit
16-Bit

Note: Each device supports up to 10000 addressable Read/Write register and constant locations, in
addition to 1000 variable length, Read/Write string locations. For more information, refer to Address
Descriptions.

MaximumNumber of Channels and Devices
The maximum number of supported channels is 100. The maximum number of devices supported per
channel is 999.

Device ID
Simulator devices can be assigned Device IDs in the range of 1 to 999. When using different model types
within the same channel, unique Device IDs are required.

Live Data Simulation
The driver simulates live data by incrementing register data each time it is read as an integer data type. In
addition to simulating the simple register-basedmemory of a PLC-like device, the Simulator Driver also
supports four high-level simulation functions. These new simulation functions include RAMP, SINE, RANDOM,
and USER Defined.

Each new simulation tag is structured like a function call would be in a programming language. Using each
function requires that the appropriate properties be applied to determine the desired simulation effect. With
RAMP, there is the option to set the rate of change, the low limit, the high limit, and the increment value. With
SINE, there is the option to set the rate of change, the low limit, the high limit, the frequency, and the phase.
With RANDOM, users have the option to set the rate of change, the low limit, and the high limit. The most
creative of the new simulation functions, however, is the USER Defined function.

The USER Defined function similarly provides the option to specify a rate of change. Unlike the preset
simulation outputs of the RAMP, RANDOM, and SINE functions, the USER Defined function is used to create
sequences of data. In the place of the high limits or low limits, the USER Defined function accepts a comma
separated list of items. The list of items can be either numeric data or string data. Once a list is established,
the USER Defined function cycles through the elements of the list at the rate specified. The USER Defined
function can create complex demos that can be used to mirror real world outputs and results.

For more information, refer to Simulation Functions.

Channel Properties — General
This server supports the use of simultaneous multiple communications drivers. Each protocol or driver used
in a server project is called a channel. A server project may consist of many channels with the same
communications driver or with unique communications drivers. A channel acts as the basic building block of
an OPC link. This group is used to specify general channel properties, such as the identification attributes
and operating mode.

www.ptc.com

4



Simulator Driver

Identification

Name: User-defined identity of this channel. In each server project, each channel name must be unique.
Although names can be up to 256 characters, some client applications have a limited display window when
browsing the OPC server's tag space. The channel name is part of the OPC browser information.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: User-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Selected protocol / driver for this channel. This property specifies the device driver that was selected
during channel creation. It is a disabled setting in the channel properties.

Note: With the server's online full-time operation, these properties can be changed at any time. This
includes changing the channel name to prevent clients from registering data with the server. If a client has
already acquired an item from the server before the channel name is changed, the items are unaffected. If,
after the channel name has been changed, the client application releases the item and attempts to re-
acquire using the old channel name, the item is not accepted. With this in mind, changes to the properties
should not be made once a large client application has been developed. Utilize the User Manager to prevent
operators from changing properties and restrict access rights to server features.

Diagnostics

Diagnostics Capture: When enabled, this optionmakes the channel's diagnostic information available to
OPC applications. Because the server's diagnostic features require a minimal amount of overhead
processing, it is recommended that they be utilized when needed and disabled when not. The default is
disabled.
Note: This property is disabled if the driver does not support diagnostics.
For more information, refer to "Communication Diagnostics" in the server help.

Channel Properties — Write Optimizations
As with any OPC server, writing data to the device may be the application's most important aspect. The
server intends to ensure that the data written from the client application gets to the device on time. Given
this goal, the server provides optimization properties that can be used to meet specific needs or improve
application responsiveness.

www.ptc.com

5



Simulator Driver

Write Optimizations

Optimization Method: controls how write data is passed to the underlying communications driver. The
options are:

l Write All Values for All Tags:  This option forces the server to attempt to write every value to the
controller. In this mode, the server continues to gather write requests and add them to the server's
internal write queue. The server processes the write queue and attempts to empty it by writing data
to the device as quickly as possible. This mode ensures that everything written from the client
applications is sent to the target device. This mode should be selected if the write operation order or
the write item's content must uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can
accumulate in the write queue due to the time required to actually send the data to the device. If the
server updates a write value that has already been placed in the write queue, far fewer writes are
needed to reach the same final output value. In this way, no extra writes accumulate in the server's
queue. When the user stops moving the slide switch, the value in the device is at the correct value at
virtually the same time. As the mode states, any value that is not a Boolean value is updated in the
server's internal write queue and sent to the device at the next possible opportunity. This can greatly
improve the application performance.

Note: This option does not attempt to optimize writes to Boolean values. It allows users to
optimize the operation of HMI data without causing problems with Boolean operations, such as a
momentary push button.

l Write Only Latest Value for All Tags:  This option takes the theory behind the second optimization
mode and applies it to all tags. It is especially useful if the application only needs to send the latest
value to the device. This mode optimizes all writes by updating the tags currently in the write queue
before they are sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for
every one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read
operation. Although the application is performing a large number of continuous writes, it must be ensured
that read data is still given time to process. A setting of one results in one read operation for every write
operation. If there are no write operations to perform, reads are processed continuously. This allows
optimization for applications with continuous writes versus a more balanced back and forth data flow.

Note: It is recommended that the application be characterized for compatibility with the write
optimization enhancements before being used in a production environment.

Channel Properties — Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the
Advanced group does not appear for those devices.

Non-Normalized Float Handling: Non-normalized float handling allows users to specify how a driver
handles non-normalized IEEE-754 floating point data. A non-normalized value is defined as Infinity, Not-a-
Number (NaN), or as a Denormalized Number. The default is Replace with Zero. Drivers that have native
float handling may default to Unmodified. Descriptions of the options are as follows:

www.ptc.com

6



Simulator Driver

l Replace with Zero:  This option allows a driver to replace non-normalized IEEE-754 floating point
values with zero before being transferred to clients.

l Unmodified:  This option allows a driver to transfer IEEE-754 denormalized, normalized, non-
number, and infinity values to clients without any conversion or changes.

Note: This property is disabled if the driver does not support floating point values or if it only supports the
option that is displayed. According to the channel's float normalization setting, only real-time driver tags
(such as values and arrays) are subject to float normalization. For example, EFM data is not affected by this
setting.

For more information on the floating point values, refer to "How To ... Work with Non-Normalized Floating
Point Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to
the next device after data is received from the current device on the same channel. Zero (0) disables the
delay.

Note: This property is not available for all drivers, models, and dependent settings.

Channel Properties — Persistence

Item Persistence: Select Enable to configure the device to retain its values of K (constant), R (register), and
S (string) addresses between runs. Item persistence for simulation functions is not currently supported.
When enabled, the values stored in all K, R, and S addresses of each device configured on the channel are
saved to file when the server project is closed (or the server is shut down). These values are restored from
file the next time the server project is opened. A separate file is used for each channel using this feature.
The default setting is disabled.
For more information, refer to Simulation Functions.

Data File: Specify where the data should be stored for devices on this channel. A fully qualified path and file
name is required. The driver creates the file and folders in its path, but users must use this feature to specify
a unique file for each Simulator channel.

www.ptc.com

7



Simulator Driver

Device Properties — General
A device represents a single target on a communications channel. If the driver supports multiple controllers,
users must enter a device ID for each controller.

Identification

Name:  This property specifies the name of the device. It is a logical user-defined name that can be up to
256 characters long, andmay be used onmultiple channels.

Note: Although descriptive names are generally a good idea, some OPC client applications may have a
limited display window when browsing the OPC server's tag space. The device name and channel name
become part of the browse tree information as well. Within an OPC client, the combination of channel name
and device name would appear as "ChannelName.DeviceName".

For more information, refer to "How To... Properly Name a Channel, Device, Tag, and Tag Group" in server
help.

Description: User-defined information about this device.
Many of these properties, including Description, have an associated system tag.

Channel Assignment: User-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device. This property specifies the driver selected during channel
creation. It is disabled in the channel properties.

Model:  This property specifies the specific type of device that is associated with this ID. The contents of the
drop-downmenu depends on the type of communications driver being used. Models that are not supported
by a driver are disabled. If the communications driver supports multiple device models, the model selection
can only be changed when there are no client applications connected to the device.

Note: If the communication driver supports multiple models, users should try to match the model
selection to the physical device. If the device is not represented in the drop-downmenu, select a model that
conforms closest to the target device. Some drivers support a model selection called "Open," which allows
users to communicate without knowing the specific details of the target device. For more information, refer
to the driver help documentation.

ID:  This property specifies the device's station / node / identity / address. The type of ID entered depends
on the communications driver being used. For many drivers, the ID is a numeric value. Drivers that support a
Numeric ID provide users with the option to enter a numeric value whose format can be changed to suit the
needs of the application or the characteristics of the selected communications driver. The ID format can be

www.ptc.com

8



Simulator Driver

Decimal, Octal, and Hexadecimal. If the driver is Ethernet-based or supports an unconventional station or
node name, the device's TCP/IP address may be used as the device ID. TCP/IP addresses consist of four
values that are separated by periods, with each value in the range of 0 to 255. Some device IDs are string
based. There may be additional properties to configure within the ID field, depending on the driver.

Operating Mode

Data Collection:  This property controls the device's active state. Although device communications are
enabled by default, this property can be used to disable a physical device. Communications are not
attempted when a device is disabled. From a client standpoint, the data is marked as invalid and write
operations are not accepted. This property can be changed at any time through this property or the device
system tags.

Simulated:  This option places the device into Simulation Mode. In this mode, the driver does not attempt to
communicate with the physical device, but the server continues to return valid OPC data. Simulated stops
physical communications with the device, but allows OPC data to be returned to the OPC client as valid data.
While in Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated
device is read back and each OPC item is treated individually. The item's memory map is based on the group
Update Rate. The data is not saved if the server removes the item (such as when the server is reinitialized).
The default is No.

Notes:

1. This System tag (_Simulated) is read only and cannot be written to for runtime protection. The System
tag allows this property to be monitored from the client.

2. In Simulationmode, the item's memory map is based on client update rate(s) (Group Update Rate for
OPC clients or Scan Rate for native and DDE interfaces). This means that two clients that reference
the same item with different update rates return different data.

 Simulation Mode is for test and simulation purposes only. It should never be used in a production
environment.

Device Properties — Scan Mode
The ScanMode specifies the subscribed-client requested scan rate for tags that require device
communications. Synchronous and asynchronous device reads and writes are processed as soon as
possible; unaffected by the ScanMode properties.

Scan Mode: specifies how tags in the device are scanned for updates sent to subscribed clients.
Descriptions of the options are:

l Respect Client-Specified Scan Rate:  This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate:  This mode specifies the maximum scan rate to be used.

The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is

increased, the changes take effect immediately. When the scan rate value is decreased, the changes
do not take effect until all client applications have been disconnected.

www.ptc.com

9



Simulator Driver

l Request All Data at Scan Rate:  This mode forces tags to be scanned at the specified rate for
subscribed clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only:  This mode does not periodically poll tags that belong to the
device nor perform a read to get an item's initial value once it becomes active. It is the client's
responsibility to poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device
reads for individual items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate:  This mode forces static tags to be scanned at the rate specified
in their static configuration tag properties. Dynamic tags are scanned at the client-specified scan
rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for
newly activated tag references from stored (cached) data. Cache updates can only be provided when the
new item reference shares the same address, scan rate, data type, client access, and scaling properties. A
device read is used for the initial update for the first client reference only. The default is disabled; any time a
client activates a tag reference the server attempts to read the initial value from the device.

Device Properties — Tag Generation
The automatic tag database generation features make setting up an application a plug-and-play operation.
Select communications drivers can be configured to automatically build a list of tags that correspond to
device-specific data. These automatically generated tags (which depend on the nature of the supporting
driver) can be browsed from the clients.

If the target device supports its own local tag database, the driver reads the device's tag information and
uses the data to generate tags within the server. If the device does not natively support named tags, the
driver creates a list of tags based on driver-specific information. An example of these two conditions is as
follows:

1. If a data acquisition system supports its own local tag database, the communications driver uses the
tag names found in the device to build the server's tags.

2. If an Ethernet I/O system supports detection of its own available I/Omodule types, the
communications driver automatically generates tags in the server that are based on the types of I/O
modules plugged into the Ethernet I/O rack.

Note: Automatic tag database generation's mode of operation is completely configurable. For more
information, refer to the property descriptions below.

On Device Startup
This property specifies when OPC tags are automatically generated. Descriptions of the options are as
follows:

l Do Not Generate on Startup:  This option prevents the driver from adding any OPC tags to the tag
space of the server. This is the default setting.

www.ptc.com

10



Simulator Driver

l Always Generate on Startup:  This option causes the driver to evaluate the device for tag
information. It also adds tags to the tag space of the server every time the server is launched.

l Generate on First Startup:  This option causes the driver to evaluate the target device for tag
information the first time the project is run. It also adds any OPC tags to the server tag space as
needed.

Note: When the option to automatically generate OPC tags is selected, any tags that are added to the
server's tag space must be saved with the project. Users can configure the project to automatically save
from the Tools | Optionsmenu.

On Duplicate Tag
When automatic tag database generation is enabled, the server needs to know what to do with the tags that
it may have previously added or with tags that have been added or modified after the communications
driver since their original creation. This setting controls how the server handles OPC tags that were
automatically generated and currently exist in the project. It also prevents automatically generated tags
from accumulating in the server.

For example, if a user changes the I/Omodules in the rack with the server configured to Always Generate
on Startup, new tags would be added to the server every time the communications driver detected a new
I/Omodule. If the old tags were not removed, many unused tags could accumulate in the server's tag space.
The options are:

l Delete on Create:  This option deletes any tags that were previously added to the tag space before
any new tags are added. This is the default setting.

l Overwrite as Necessary:  This option instructs the server to only remove the tags that the
communications driver is replacing with new tags. Any tags that are not being overwritten remain in
the server's tag space.

l Do not Overwrite:  This option prevents the server from removing any tags that were previously
generated or already existed in the server. The communications driver can only add tags that are
completely new.

l Do not Overwrite, Log Error:  This option has the same effect as the prior option, and also posts an
error message to the server's Event Log when a tag overwrite would have occurred.

Note: Removing OPC tags affects tags that have been automatically generated by the
communications driver as well as any tags that have been added using names that match generated
tags. Users should avoid adding tags to the server using names that may match tags that are
automatically generated by the driver.

Parent Group:  This property keeps automatically generated tags frommixing with tags that have been
enteredmanually by specifying a group to be used for automatically generated tags. The name of the group
can be up to 256 characters. This parent group provides a root branch to which all automatically generated
tags are added.

Allow Automatically Generated Subgroups:  This property controls whether the server automatically
creates subgroups for the automatically generated tags. This is the default setting. If disabled, the server
generates the device's tags in a flat list without any grouping. In the server project, the resulting tags are
named with the address value. For example, the tag names are not retained during the generation process.

Note: If, as the server is generating tags, a tag is assigned the same name as an existing tag, the system
automatically increments to the next highest number so that the tag name is not duplicated. For example, if
the generation process creates a tag named "AI22" that already exists, it creates the tag as "AI23" instead.

www.ptc.com

11



Simulator Driver

Create: Initiates the creation of automatically generated OPC tags. If the device's configuration has been
modified, Create tags forces the driver to reevaluate the device for possible tag changes. Its ability to be
accessed from the System tags allows a client application to initiate tag database creation.

Note: Create tags is disabled if the Configuration edits a project offline.

www.ptc.com

12



Simulator Driver

Data Types Description
Each address that can be accessedmust be assigned a data type. Simulator devices support the following
data types.

Data
Type

Description

BCD
Two-byte packed BCD
Value range is 0-9999. Behavior is undefined for values beyond this range.

Boolean Single bit

Byte
Unsigned 8-bit value
bit 0 is the low bit
bit 7 is the high bit

Char

Signed 8-bit value
bit 0 is the low bit
bit 6 is the high bit
bit 7 is the sign bit

Date Floating-point OLE automation date (maps to VARIANT VT_DATE data type).

Double*
64-bit floating point value
The driver interprets four consecutive registers as a double precision value by making the last
two registers the high DWord and the first two registers the low DWord.

Double
example

If register 40001 is specified as a double, bit 0 of register 40001 would be bit 0 of the 64-bit
data type and bit 15 of register 40004 would be bit 63 of the 64-bit data type.

DWord
Unsigned 32-bit value
bit 0 is the low bit
bit 31 is the high bit

Float*
32-bit floating point value
The driver interprets two consecutive registers as a single precision value by making the last
register the high word and the first register the low word.

Float
example

If register 40001 is specified as a float, bit 0 of register 40001 would be bit 0 of the 32-bit data
type and bit 15 of register 40002 would be bit 31 of the 32-bit data type.

LBCD
Four byte packed BCD
Value range is 0-99999999. Behavior is undefined for values beyond this range.

Long

Signed 32-bit value
bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

LLong

Signed 64-bit value
bit 0 is the low bit
bit 62 is the high bit
bit 63 is the sign bit

QWord
Unsigned 64-bit value
bit 0 is the low bit
bit 63 is the high bit

Short
Signed 16-bit value
bit 0 is the low bit
bit 14 is the high bit

www.ptc.com

13



Simulator Driver

Data
Type

Description

bit 15 is the sign bit

String Null-terminated ASCII character array

Word
Unsigned 16-bit value
bit 0 is the low bit
bit 15 is the high bit

*The descriptions assume the default; that is, first DWord low data handling of 64-bit data types and first
word low data handling of 32-bit data types.

www.ptc.com

14



Simulator Driver

Address Descriptions
The Simulator Driver supports three types of addresses: R registers, K registers, and S registers. The R and K
registers are numeric data. S registers are variable length string data locations.

The R registers simulate changing data by incrementing by one on each read when referenced as type Char,
Byte, Word, Short, BCD, Long, DWord, LLong, QWord, or LBCD. Arrays of these types increment by one on
each read. When R registers are referenced as type Float or Double, the value is incremented by 1.25 on
each read. Arrays of type Float or Double do not increment unless there are individual tags for the
addresses in the array. Furthermore, each type has a range over which the incrementing occurs. For type
Float, the range is 0 to 32767. For type Double, the range is 0 to 65535.

The K and R registers have an initial value of zero. S registers have an initial value of 'String data Sn' where n
is the register number.

Address range and data type specifications vary depending on the model in use. The Simulator Driver also
supports new simulation functions, which include RAMP, SINE, RANDOM and USER Defined. For more
information, select a link from the list below.

8-Bit Device Addresses
16-Bit Device Addresses

8-Bit Device Addresses
The memory configuration for the 8-bit device is simulated as a block of byte locations numbered from 0 to
9999. Each byte can be addressed as an offset from the start of the block. The default data types for each
format are shown in bold.

Device Type Range Data Type Access

Registers

R0000-R9999
R0000-R9998
R0000-R9996
R0000-R9992

Byte, Char
Word, Short, BCD,
DWord, Long, LBCD, Float,
LLong, QWord, Double,
Date, Boolean

Read/Write

Constants

K0000-K9999
K0000-K9998
K0000-K9996
K0000-K9992

Byte, Char
Word, Short, BCD
DWord, Long, LBCD, Float
LLong, QWord, Double,
Date, Boolean

Read/Write

Bits
R0000.0-R9999.7
K0000.0-K9999.7

Boolean Read/Write

Strings S000-S999 String Read/Write

Notes:

1. All data types except bit-level Boolean support arrays by appending the [r] or [r][c] notation to the
address.

2. The address specified for a data type must allow for the full size of the data type. This means that
users cannot write past the end of the data range.

www.ptc.com

15



Simulator Driver

See Also: Simulation Functions

16-Bit Device Addresses
The memory configuration for the 16-Bit Device is simulated as a block of word locations numbered from 0
to 9999. Each word can be addressed as an offset from the start of the block. The default data types for each
format are shown in bold.

Device Type Range Data Type Access

Registers
R0000-R9999
R0000-R9998
R0000-R9996

Word, Short, BCD
DWord, Long, LBCD, Float
LLong, QWord, Double,
Date, Boolean

Read/Write

Constants
K0000-K9999
K0000-K9998
K0000-K9996

Word, Short, BCD
DWord, Long, LBCD, Float
LLong, QWord, Double,
Date, Boolean

Read/Write

Bits
R0000.00-R9999.15
K0000.00-K9999.15

Boolean Read/Write

Strings S000-S999 String Read/Write

Notes:

1. All data types except bit-level Boolean support arrays by appending the [r] or [r][c] notation to the
address.

2. The address specified for a data type must allow for the full size of the data type. This means that
users cannot write past the end of the data range.

See Also: Simulation Functions

Simulation Functions
Simulation functions can be used to create OPC items that mimic many real world data sources. While each
of the simulation functions provides different outputs, they have many common properties such as Rate,
Low Limit, andHigh Limit. The Rate (which is also called Rate of Change) is used to specify how often the
simulation value changes states. The Rate value is entered as a count of milliseconds with the value range
being 10 to 3600000. This rate of change is completely independent of how often the client applicationmay
be reading data. Like a PLC, the simulation functions are always running in the background.

The Low Limit and High Limit
The Low Limit and High Limit properties can be used to specify the range or span of data generated by the
simulation function. By using the Low Limit and High Limit property, users can produce simulation values
that are offset by simply adjusting the span of the data. For the simulation functions that support limits, the
format in which the range is entered is used to determine the data type of the simulation value. If, for
example, a RAMP tag is entered with a Low Limit of 75 and a High Limit of 3000 the resulting OPC item is
considered to be a Long data type. If the same RAMP is entered with a Low Limit of 75.123 and a High Limit
of 3000.567 the resulting OPC item is considered to be Float data type. In these two examples, the default
data format was either Float or Long, but any of the available data types can be chosen as the output format
for any simulation function. The range specified by the Low and High Limits, however, must fit within the
desired data type selection.

www.ptc.com

16



Simulator Driver

Unlike the register-based address above, there is no limit to the number of simulation functions that can be
entered. Each simulation function that has unique properties is considered a new simulation value. Thus,
when creating addressing simulation functions with the intent of reading the same value in multiple
locations in the client application, it is important that the simulation function is entered the same way in each
case.

Simulation Functions are Read-Only Objects
Simulation functions are Read Only objects. Once a client application begins reading data from a simulation
function, the function continues to generate data until the item is deleted by a client application. When
entering floating point properties, the simulation functions do not accept the entry of numeric values in
exponential form.

Functions Definitions
Ramp Function
Random Function
Sine Function
User Function

Ramp Function
RAMP(Rate, Low Limit, High Limit, Increment)
The RAMP function can be used to create a value that increments or decrements through a numeric range.
The low limit and high limit should be used to set the desired range. The low or high limits can be adjusted to
apply an offset to the data generated. The increment value can be either a positive or negative value. If the
increment value is positive, the value generated ramps from the low limit to the high limit at the desired
rate. If the increment value is negative, the value generated ramps from the high limit to the low limit at the
desired rate. The values of low limit, high limit, and increment can be entered either as whole numbers or in
floating-point format.

Supported Data Types
Byte, Char, Word, Short, DWord, Long, Float, Double

Examples
RAMP(120, 35, 100, 4)
This creates a value that ramps up from 35 to 100 incremented by 4 every 120 milliseconds.

RAMP(300, 150.75, 200.50, -0.25)
This creates a value that ramps down from 200.50 to 150.75 decremented by 0.25 every 300 milliseconds.

Random Function
RANDOM(Rate, Low Limit, High Limit)
The RANDOM function can be used to create an item that changes randomly within a specific numeric
range. The Low Limit and High Limit should be used to set the desired range. The Low or High limits can be
adjusted in order to apply an offset to the data generated.

Supported Data Types
Byte, Char, Word, Short, DWord, Long, Float, Double

www.ptc.com

17



Simulator Driver

Example
RANDOM(30, -20, 75)
This creates a value that randomly changes within the range of -20 to 75 at a rate of 30 milliseconds.

Sine Function
SINE(Rate, Low Limit, High Limit, Frequency, Phase)
SINE function can be used to create an item that follows a sinusoidal change of value. The Low Limit and
High Limit should be used to set the desired range. The Low or High limits can be adjusted in order to apply
an offset to the data generated. The Frequency property can be used to specify the desired waveform in
Hertz. The maximum effective frequency is about 5 Hertz. The valid range for the Frequency property is
0.001 to 5 Hertz. The Phase property can be used to offset the sine wave generated by a specific angle.
Phase should be entered with a range of 0.0 to 360.0. The Rate property in this case plays a key role in how
this simulation function operates. In order to get a good sinusoidal output from this function, the Rate must
at least twice as fast as the desired Frequency. For example, if users desire a sine wave of 5 Hertz which
changes at about a 200 millisecond rate, the Rate property should be set to 100 milliseconds at maximum.
For the best Sine wave results setting the Rate to either 10 or 20 milliseconds is recommended. The valid
range of Rate for a SINE function is 10-1000 milliseconds.

Supported Data Types
Float, Double

Example
SINE(10, -40, 40, 2, 0)
This creates a sinusoidal value with a frequency of 2 Hertz that ranges from -40 to 40 with no phase shift.

User Function
USER(Rate, User Value1, User Value2, User Value3, ...User ValueN)
The USER function provides the most flexibility in defining what type of data the simulation function returns.
Unlike the other functions that operate over a specified range, the USER function can be used to specify a
set of numeric or string values to be cycled through at the specified rate. The values entered are used to
determine data type of this item. For example, if a value of 100.45 is entered as one of the user values, the
output of the simulation object would be considered to be floating point data. If one of the user values
entered was "Hello World" the output of the simulation object would be considered to be string data. These
default selections can be overridden by specifying the desired data type when the item is defined.

Note: When entering user values as strings the comma can be entered within a string value by first
prefixing it with the backslash "\,".

Supported Data Types
Bool, Byte, Char, Word, Short, DWord, Long, Float, Double
Note: The values entered in the USER simulation function are used to determine the default data type.

Examples
USER(250, Hello, World, this, is, a, test)
This creates a value of data type string that changes from one text word in the sequence to the next at a rate
of 250 milliseconds.

USER(20, 1.25, 100.56, 200.11,75.1)

www.ptc.com

18



Simulator Driver

This creates a value of data type float that changes from one floating-point value in the sequence to the next
at a rate of 20 milliseconds.

USER(50, 1,1,0,1,0,1,0,0,1,1,1,0,0,0)
This generates a value of type Boolean that changes from one Boolean state in the sequence to the next at a
rate of 50 milliseconds. This can be used to create very complex bit patterns.

USER(1000, In this case\, , I needed to use a \, in , my text)
The "\," in these text fragments were needed to allow a comma to be placed within a text value. Additionally
the text for each value can be a sentence or sentence fragment if needed.

www.ptc.com

19



Simulator Driver

Event Log Messages
The following information concerns messages posted to the Event Log pane in the main user interface.
Consult the server help on filtering and sorting the Event Log detail view. Server help contains many
commonmessages, so should also be searched. Generally, the type of message (informational, warning)
and troubleshooting information is provided whenever possible.

Could not load item state data. Reason: <reason>.
Error Type:
Warning

Possible Cause:

1. The driver could not load or save item state data for the specified reason.

2. Corrupt data files.

3. Inadequate disk space.

4. Invalid drive in path.

5. Deleted or renamed data files.

Possible Solution:
Solution depends upon the reason given in the error message. In the case of file corruption or deletion,
previous state data is lost.

Could not save item state data. Reason: <reason>.
Error Type:
Warning

Possible Cause:

1. The driver could not load or save item state data for the specified reason.

2. Corrupt data files.

3. Inadequate disk space.

4. Invalid drive in path.

5. Deleted or renamed data files.

Possible Solution:
Solution depends upon the reason given in the error message. In the case of file corruption or deletion,
previous state data is lost.

www.ptc.com

20



Simulator Driver

Index

1

16-Bit Device Addresses 16

8

8-Bit Device Addresses 15

A

Address Descriptions 15

Advanced Channel Properties 6

Allow Sub Groups 11

B

BCD 13

Boolean 13

Byte 13

C

Channel Assignment 8

Channel Properties - General 4

Channel Properties — Write Optimizations 5

Char 13

Could not load item state data. Reason

<reason>. 20

Could not save item state data. Reason

<reason>. 20

Create 12

D

Data Collection 9

Data Types Description 13

www.ptc.com

21



Simulator Driver

Date 13

Delete 11

Description 8

Device Properties — General 8

Device Properties — Tag Generation 10

Diagnostics 5

Do Not Scan, Demand Poll Only 10

Double 13

Driver 5, 8

Duty Cycle 6

DWord 13

E

Event Log Messages 20

F

Float 13

G

Generate 10

H

Help Contents 3

I

ID 8

IEEE-754 floating point 6

Initial Updates from Cache 10

L

LBCD 13

LLong 13

www.ptc.com

22



Simulator Driver

Long 13

M

Model 8

N

Name 8

Non-Normalized Float Handling 6

O

On Device Startup 10

On Duplicate Tag 11

Optimization Method 6

Overview 3

Overwrite 11

P

Parent Group 11

Persistence 7

Q

QWord 13

R

Ramp Function 17

Random Function 17

Registers 15

Request All Data at Scan Rate 10

Request Data No Faster than Scan Rate 9

Respect Client-Specified Scan Rate 9

Respect Tag-Specified Scan Rate 10

www.ptc.com

23



Simulator Driver

S

ScanMode 9

Setup 4

Short 13

Simulated 9

Simulation Functions 16

Sine Function 18

String 14

T

Tag Generation 10

U

User Function 18

W

Word 14

Write All Values for All Tags 6

Write Only Latest Value for All Tags 6

Write Only Latest Value for Non-Boolean Tags 6

Write Optimizations 6

www.ptc.com

24


	Simulator Driver
	Table of Contents
	Simulator Driver
	Overview

	Setup
	Channel Properties — General
	Channel Properties — Write Optimizations
	Channel Properties — Advanced
	Channel Properties — Persistence
	Device Properties — General
	Device Properties — Scan Mode
	Device Properties — Tag Generation

	Data Types Description
	Address Descriptions
	8-Bit Device Addresses
	16-Bit Device Addresses
	Simulation Functions
	Ramp Function
	Random Function
	Sine Function
	User Function


	Event Log Messages
	Could not load item state data. Reason: <reason>.
	Could not save item state data. Reason: <reason>.

	Index

