
© 2010 Kepware Technologies

ClientAce OPC .NET
Toolkit Help

ClientAce OPC .NET Toolkit Help1

Table of Contents

... 41 Getting Started

.. 4Help Contents

.. 4ClientAce Overview

... 52 System and Application Requirements

.. 5System and Application Requirements

... 53 ClientAce .NET API

.. 5ClientAce .NET API

.. 5Overview of ClientAce .NET API

.. 6Kepware.ClientAce.OPCCmn ServerIdentifier Class

.. 6Kepware.ClientAce.OPCCmn ServerCategory Enumeration

.. 6Kepware.ClientAce.OpcDaClient Data Model Classes

... 6Kepware.ClientAce.OpcDaClient Data Model Classes

... 7DaServerMgt Class

... 7ServerState Enumeration

... 7ItemIdentifier Class

... 8ItemValue Class

... 8ItemValueCallback Class

... 9ItemResultCallback Class

... 9BrowseElement Class

... 10BrowseFilter Enumeration

... 10ItemProperties Class

... 10ItemProperty Class

... 11ResultID Class

... 11QualityID Class

... 11ConnectInfo Class

... 12ReturnCode Enumeration

.. 12Kepware.ClientAce.OpcDaClient Interface of DaServerMgt

... 12Kepware.ClientAce.OpcDaClient Interface of DaServerMgt

... 13Creating DaServerMgt Object

... 13Connect Method

... 16Disconnect Method

... 16IsConnected Property

... 17ServerState Property

... 17Browse Method

... 23GetProperties Method

... 26Subscribe Method

... 29SubscriptionModify Method

... 32SubscriptionAddItems Method

... 35SubscriptionRemoveItems Method

... 38SubscriptionCancel Method

... 39WriteAsync Method

... 42Write Method

... 44ReadAsync Method

... 47Read Method

... 51DataChanged Event

... 53WriteCompleted Event

... 55ReadCompleted Event

... 58ServerStateChanged Event

2Contents

2

.. 59Kepware.ClientAce.OPCCmn Interface of OpcServerEnum Object

... 59Kepware.ClientAce.OPCCmn Interface of OpcServerEnum Object

... 59Creating OpcServerEnum Object

... 59EnumComServer Method

... 62ClsidFromProgID Method

... 644 DA Junction .NET Control

.. 64DA Junction .NET Control

.. 64Overview of ClientAce DA Junction

.. 64ClientAceDA_Junction

.. 65Project Setup

... 65Project Setup

... 66DA Junction Configuration Window

... 71A Sample Project Using DA Junction with VB.NET or C#

... 80Item Update Rate

... 82Disable Datachange while Control Has Focus

.. 84Data Types Description

... 84Data Types Description

... 845 Additional ClientAce .NET Controls

.. 84Additional ClientAce .NET Controls

.. 85ClientAce Browser Controls

... 85ClientAceServerBrowser

... 87ClientAceItemBrowser

... 95OpcDaItem Class

... 95OPCUrl Class

... 95AccessRights Enumerated Values

... 96NodeType Enumerated Values

... 96OPCType Enumerated Values

... 96ServerBrowser Control

... 98ItemBrowser Control

.. 101KEPServerEX Browser Controls

... 101ServerState Control

... 103ChannelSettings Control

... 106Kepware.ClientAce.KEPServerEXControls

... 1066 Demo Mode

.. 106Demo Mode

... 1077 Licensing ClientAce

.. 107Licensing ClientAce

... 1098 Signing Your Client Application

.. 109Signing Your Client Application

... 1109 Deploying Your Client Application

.. 110Deploying Your Client Application

.. 110Visual Studio 2003 and Visual Studio 2005 (.NET 1.1.0.x Assemblies)

.. 111Visual Studio 2008 and Visual Studio 2010 (.NET 3.5.0.x Assemblies)

... 11210 Troubleshooting

.. 112Troubleshooting

.. 112Missing Controls

.. 117Referencing Controls

.. 117CoInitializeSecurity

.. 121Visual Studio 2005 and .Net 1.1.0.x Assemblies LoaderLock Exception

.. 122Removing Blank Toolbar Options after Uninstalling ClientAce (VS 2005)

.. 123ASP .NET Development Incompatibility

.. 123Visual Studio 2008 and 2010

ClientAce OPC .NET Toolkit Help3

.. 123Visual Studio 2010

.. 124Microsoft Visual Studio Environment Configuration

... 12411 Appendices

.. 124Appendices

.. 125Appendix 1 ResultID Codes

.. 125Appendix 2 QualityID Codes

.. 126Appendix 3 QualityID LimitBits and Name

Index 129

4

www.kepware.com

ClientAce OPC .NET Toolkit Help

Help version 1.050

Contents

ClientAce Overview

System and Application Requirements

ClientAce .NET API

DA Junction .NET Control

Additional ClientAce .NET Controls

Demo Mode

Licensing ClientAce

Signing Your Client Application

Deploying Your Client Application

Troubleshooting

Appendix

© Kepware Technologies. Kepware and KEPServerEX are trademarks of Kepware Technologies. Other company and
product names mentioned herein are the trademarks or registered trademarks of their respective owners.

ClientAce Overview

ClientAce provides tools to help developers easily build an OPC client application. ClientAce consists of two main parts:
the .NET API and the DA Junction.

ClientAce .NET API

The ClientAce .NET API (Application Programming Interface) provides C# and Visual Basic .NET language users with a
simple, intuitive and optimized class library in order to quickly develop OPC client applications for accessing OPC
servers.

ClientAce DA Junction .NET Control

The ClientAce DA Junction is a customized .NET control that enables Visual Basic .NET or C# programmers to develop
OPC client applications that can access a variety of OPC servers. No detailed knowledge of OPC Data Access interfaces
is required. The DA Junction will perform the connection handling procedure between your custom client application and
the OPC server, as well as monitoring and reconnecting when necessary. When building advanced custom OPC client
applications that require more control over OPC functionality, however, ClientAce .NET API is recommended.

Additional ClientAce .NET Controls

ClientAce also includes additional controls that can be used in the Visual Studio Environment. For descriptions and
installation instructions, refer to Additional ClientAce Controls.

5

www.kepware.com

ClientAce OPC .NET Toolkit Help

System and Application Requirements

The following requirements must be met in order for the application to operate as designed.

PC Software Requirements

Microsoft Windows operating system requirements are the same for both ClientAce and the Microsoft Visual Studio
development environment that is used to develop ClientAce applications. If the operating system's requirements for the
version of Visual Studio being used does not list the operating system intended for use, then ClientAce is not supported
for use on that operating system.

UAC on Windows Vista and Windows 7

To ensure that all components function correctly in the design environment, turn UAC off on machines being used to
develop applications with ClientAce. UAC limits access to folders and files in the design environment, which will affect
some objects in the design environment. UAC does not affect these objects in the Runtime environment.

PC Hardware Requirements

The following is required:
 Refer to Microsoft's .NET Framework hardware requirements for the version that will be used in the Visual Studio

project.

 100 MB available disk space.

Microsoft Visual Studio Requirements

ClientAce is currently supported for Microsoft Visual Studio 2003, Visual Studio 2005, Visual Studio 2008 SP1, and
Visual Studio 2010.

Note: ASP.NET applications cannot be developed with ClientAce.

.NET Framework Requirements

When deploying the custom client applications created using ClientAce, the .NET Framework requirements depend on
the version of Visual Studio that was used for development. For more information, refer to the appropriate section in
Deploying Your Client Application.

OPC Data Access Requirements

ClientAce supports OPC Data Access (DA) servers that support the following specifications:
 DA server version 2.0

 DA server version 2.05A

 DA server version 3.0

Note: Other DA and OPC servers are not supported at this time.

ClientAce .NET API

For more information on a specific ClientAce .NET API topic, select a link from the list below.

Overview of ClientAce .NET API

OpcDaClient Data Model Classes

OpcDaClient Interface of DaServerMgt

OPCCmn Interface of OpcServerEnum Object

OPCCmn ServerIdentifier Class

OPCCmn ServerCategory Enumerator

Overview of .NET Class API

Kepware's ClientAce .NET API provides developers working with languages such as C# and Visual Basic .NET with a
simple, intuitive and optimized class library to quickly develop OPC client applications for accessing OPC servers.

Features of the ClientAce .NET API
 A simple, intuitive .NET interface.

6

www.kepware.com

ClientAce OPC .NET Toolkit Help

 The OPC Data Access interface has been simplified down to the major functions.

 No detailed knowledge of the different OPC Data Access interfaces is required.

 The API covers the different base technologies of OPC, for example, COM and DCOM.

 The API completely covers the connection handling to multiple OPC Servers including connection establishment,

connection monitoring and reconnection in case of errors.

 The development of OPC Client applications with C# or Visual Basic .NET becomes very simple using ClientAce.

 Conversion of OPC data from different OPC Data Access interfaces into .NET data types.

 Fast and simple search for OPC COM Servers, both local and remote.

 High performance and optimized Client-Server communication by using kernel functionality implemented in C++.

Kepware.ClientAce.OPCCmn ServerIdentifier Class

ServerIdentifier objects are returned by the EnumComServers method and contain information that describe the OPC
servers installed on the specified machine.

Public Properties Data Type Description

Category ServerCategory Server category (see ServerCategory Enumerator)

CLSID String CLSID (Class ID) of the OPC server.

HostName String The name or the IP address of the OPC server's host machine
(e.g., localhost, PCTest, 192.168.0.120, etc.). If this parameter
is left unassigned, the local host is assumed.

ProgID String ProgID (program ID) of the OPC server.

URL String The url of the server, formatted for use in the Connect
Method.

Kepware.ClientAce.OPCCmn ServerCategory Enumeration

The ServerCategory enumerator is used to specify the type of OPC server.

Value Description

OPCAE Server supports OPC AE 1.10 (alarms and events)

OPCDA Server supports OPC DA 2.0, 2.05A, and 3.0 (data access)

OPCDX Server supports OPC DX 1.00 (data exchange)

OPCHDA Server supports OPC HDA 1.10 (historical data access)

OPCXMLDA Server supports OPC XMLDA 1.01 (XML data access)

Note: Because OPC XML-DA servers are not registered like COM OPC servers, they cannot be found using the
OpcServerEnum object. The URL must be known to connect to an OPC XML-DA server.

Kepware.ClientAce.OpcDaClient Data Model Classes

The DaServerMgt object provides the following functionality in the Kepware.ClientAce.OpcDaClient namespace:

Connecting to the OPC Server

The Connect Method is used to connect to the OPC Server; the Disconnect method is used to release the connection.
Because the connection is monitored by ClientAce, the client will be notified of changes in connection status through
ServerStateChanged events.

Data Change Notification

To avoid cyclic reading, ClientAce API provides tools which notify the client of changes in values. Items can be
registered for monitoring by using the Subscribe method; Subscriptions can be cancelled using the SubscriptionCancel
method. Notifications of changed values are made by the DataChanged event. Items can be added or removed from a
subscription at any time using the SubscriptionAddItems and SubscriptionRemoveItems methods respectively.
Subscription properties (such as update rate, active state, and deadband) can also be changed at any time using the

7

www.kepware.com

ClientAce OPC .NET Toolkit Help

SubscriptionModify method.

Reading and Writing OPC Data Access Items

The values of OPC items can be changed using the asynchronous WriteAsync and synchronous Write methods. The
values can be obtained when subscription is not appropriate by using the asynchronous ReadAsync and synchronous
Read methods.

Obtaining Information on the Address Space

The Address Space Browse method can be used to search for OPC items. The GetProperties method can be used to
obtain the properties of OPC items.

DaServerMgt Class

The DaServerMgt class allows access to an OPC Data Access Server. For a more detailed description of the ClientAce
API and its methods, refer to Kepware.ClientAce.OpcDaClient Interface of DaServerMgt, beginning with Creating
DaServerMgt Object.

ServerState Enumeration

Changes in server connection state, as indicated in ServerStateChanged events, may have one of the following
enumerated values:

Value Description

CONNECTED The server is connected.

DISCONNECTED The server is disconnected.

ERRORSHUTDOWN The server is shutting down.

ERRORWATCHDOG The ClientAce API watchdog has determined that a server
connection has failed. ClientAce may attempt to reconnect to the
server depending on the options specified when the Connect
method was called.

UNDEFINED The server state is not known.

ItemIdentifier Class

The ItemIdentifier class is a required parameter of the following methods:
 GetProperties

 Read

 ReadAsync

 Subscribe

 SubscriptionAddItems

 SubscriptionRemoveItems

 Write

 WriteAsync

ItemIdentifier objects are used to identify OPC items within a server. These objects are passed by reference (in/out) in
all method calls so that ClientAce may update certain properties as described below.

Public Properties Data Type Description

ClientHandle Object ClientAce will reference items in DataChanged,
ReadCompleted, and WriteCompleted events by their
ClientHandle. A handle can be assigned to access the data
storage object for the item. This storage object could be a
TextBox control on the GUI or an instance of a custom
class defined in the application. (See provided Simple and
Complex examples installed with ClientAce).

DataType System.Type When an ItemItentifier object is first used, the property
may be used to specify the data type which the item value

8

www.kepware.com

ClientAce OPC .NET Toolkit Help

will be received as. If the server cannot provide the
requested type for this item, ClientAce will indicate this
through the ResultID and reset this property to the item's
Native, or canonical (default) data type. If this property is
left unspecified, ClientAce will reset this property with the
item's canonical (default) data type.

ItemName String This property contains the name (ItemID) of an OPC Data
Access item.

ItemPath String Reserved for future use.

ResultID ResultID Whenever an item specific error occurs during and OPC
call (such as, unknown ItemName, trying to write to a
read only item, unsupported data type, etc.), the error
code provided by the server will be placed in the ResultID
object for the associated ItemItendifier. ClientAce will
provide additional descriptive information for the error. If
a ClientAce API call returns a ReturnCode indicating an
error, the ResultID of all ItemIdentifiers passed to the
method should be examined to see which items failed and
why.

ServerHandle Integer The API will set this value when the ItemIdentifier is first
used. The API can use the ServerHandle to optimize future
calls to the OPC server.

ItemValue Class

The ItemValue class is used in the following methods:
 Read

 Write

 WriteAsync

The ItemValue contains the value, quality and time stamp of an OPC item.
The Read method takes an array of ItemValue objects as an output parameter.
The API allocates and fills the array with the requested item values during the read.
The Write and WriteAsync methods takes an array of ItemValue objects as an input parameter. This array must be
filled with the values to be written to the items specified in the corresponding array of ItemIdentifier objects.

Public Properties Data Type Description

Quality QualityID* The OPC quality of the associated Value. The class
QualityID provides the quality code (int), the name
(string) and the description (string). This value is Read
Only and is set by the API during reads.

TimeStamp Date The time stamp of the associated Value. This value is Read
Only and is set by the API during reads.

Value Object The value of the item. Being an object, it can contain any
data type. Typically the value will be of the same type as
requested by the corresponding ItemIdentifier. If no type
was specified, the value will be provided in its canonical
form.

*For more information, refer to QualityID Class.

ItemValueCallback Class

ItemValueCallback is derived from the ItemValue class and is used in DataChanged and ReadCompleted events.
ItemValueCallback objects will have the following properties:

Public Properties Data Type Description

ClientHandle Object This is the client handle of the item specified in the call to
Subscribe or ReadAsync. The client uses this handle to

9

www.kepware.com

ClientAce OPC .NET Toolkit Help

access the appropriate storage object for the received
data.

Quality QualityID* The quality associated with the value when it was acquired
from the data source. The class QualityID provides the
quality code (int), the name (string) and the description
(string). This value is Read Only and is set by the API
during reads.

ResultID ResultID** The class ResultID provides the error code (int), the name
(string) and a language dependant description (string) for
the item represented by the ClientHandle. Thus certain
activity can be programmed to react on eventually
occurring errors. It is also possible to simply display the
error on the user interface (message box).

TimeStamp Date The time stamp of the associated Value. This value is Read
Only and is set by the API during reads.

Value Object The value of the item. Being an object, it can contain any
data type. Typically the Value will be of the same type as
requested by the corresponding ItemIdentifier. If no type
was specified, the value will be provided in its canonical
form.

*For more information, refer to QualityID Class.

**For more information, refer to ResultID Class.

Note: Quality, TimeStamp and Value are shared from the base class.

ItemResultCallback Class

The ItemResultCallback class is used in the WriteCompleted event.

Public Properties Data Type Description

ClientHandle Object This is the client handle of the item specified in the call to
WriteAsync. The client uses this handle to access the
appropriate storage object for the received data.

ResultID ResultID* The class ResultID provides the error code (int), the name
(string) and a language dependant description (string) for
the item represented by the ClientHandle. Thus certain
activity can be programmed to react on eventually
occurring errors. It is also possible to simply display the
error on the user interface (i.e., the message box).

*For more information, refer to ResultID Class.

BrowseElement Class

The BrowseElement class contains all the information that was obtained by using the Browse method.

Public Properties Data Type Description

HasChildren Boolean True if the element has child elements in the address
space, otherwise false.

IsItem Boolean True if the element is an OPC Data Access item, otherwise
false.

ItemName String The item name of the element.

ItemPath String The item path of the element.

ItemProperties ItemProperties* The properties of the element that were available through
Browse method.

Name String The name of the returned element. Typically this name is
used for displaying the address space in a tree or other

10

www.kepware.com

ClientAce OPC .NET Toolkit Help

structured format.

*For more information, refer to ItemProperties Class.

BrowseFilter Enumeration

The BrowseFilter Enumeration is used to specify the type of child elements returned by the Browse method. Possible
filters are as follows:

Value Description

ALL All elements will be returned.

BRANCH Only elements of type Branch will be returned.

ITEM Only elements of type Item will be returned.

ItemProperties Class

Objects of this class will be returned by the Browse and GetProperties methods, and will contain all of the requested
properties of a single OPC item.

Visual Studio 2003 and Visual Studio 2005 (.NET 1.1.0.x Assemblies)

Public Properties Data Type Description

RequestedItemProperties ItemProperty* Array of objects of class ItemProperty. This array contains all
requested properties of an OPC Item.

*For more information, refer to ItemProperty Class.

Visual Studio 2008 (.NET 3.5.0.x Assemblies)

Public Properties Data Type Description

RequestedItemProperties ItemProperty* System.Collections.Generic.List of objects of class ItemProperty.
This list contains all requested properties of an OPC Item.

*For more information, refer to ItemProperty Class.

ItemProperty Class

ItemProperty objects are used to describe a single property of an OPC item.

Public Properties Data Type Description

DataType System.Type The data type of the property value.

Description String The description of the property. This information can be
used when displaying the property in a graphical user
interface, such as in a Grid Control or a ToolTip).

ItemName String If the OPC Server supports reading and writing of
properties through an item, here the item name of this
property will be returned.

ItemPath String If the OPC Server supports reading and writing of
properties through an item, here the item path of this
property will be returned.

PropertyID Integer The identification number of the property.

ResultID ResultID* If an error occurred while obtaining the properties, the
dedicated error code will be returned within this object.

Value Object The value of the property.

*For more information, refer to ResultID Class.

11

www.kepware.com

ClientAce OPC .NET Toolkit Help

ResultID Class

ResultID objects are used to describe the result of an operation on an OPC item, such as read, write, subscribe.
ResultID objects will contain the error code provided by the server, its string representation and a description of the
error code. Each item will have its own ResultIDm since requests that contain multiple items may succeed for some
items and fail for other items.

Public Properties Data Type Description

Code Integer The code sent by the server for the particular action.

Description String The description of the error (language depends on the
locale).

Name String The string representation of the code.

Succeeded Boolean This property will be True if the operation was a success
for the item, or False if it failed. If this is False, the specific
reason for failure can be determined by examining the
other properties.

QualityID Class

A QualityID object is used to describe the OPC quality of an item's value.

Public Properties Data Type Description

Description String Description of the quality code (language depends on the
locale).

FullCode Integer The full code sent by the server.

IsGood Boolean This property will be True if the value has "good" quality.
If False, detailed information about the quality of the value
can be determined from the other properties.

LimitBits Integer The limit portion of the code sent by the server.*

Name String String representation of the code.*

Quality Integer Code that indicates the quality of the value sent by the
server.*

VendorBits Integer Vendor-specific data within the code.*

*For more information on OPC Quality based on the OPC specifications, refer to Appendix 3.

ConnectInfo Class

A ConnectInfo object is used to pass connection related options to the API. This information determines how the API will
monitor and maintain connections, and also provide language dependent strings.

Public Properties Data Type Description

KeepAliveTime Integer During Runtime the API continuously checks the
availability of the connection to the server. KeepAliveTime
represents the time interval, in milliseconds, at which this
availability check takes place. The default value is 10,000
ms. The API will start reconnection attempts at an interval
of two times KeepAliveTime and will be incremented by 1
KeepAliveTime up to 10 times KeepAliveTime if the server
is not available for a longer time period. The reconnect
interval after a shutdown event from the OPC server is one
minute.

For example, if KeepAliveTime = 10,000 ms, then the first
reconnect attempt will be 20 seconds after check-fail; the
second reconnect attempt will be 30 seconds after the
first; the third reconnect attempt will be 40 seconds after
the second, and so on up to 100 seconds. From that point
on, retries will continue every 100 seconds.

12

www.kepware.com

ClientAce OPC .NET Toolkit Help

LocalID String Using LocalID, a country abbreviation (en-us, en, etc.) can
be passed to the server. When the LocalID is set, the
language-dependent return values will be returned in the
selected language, if supported by the OPC server. If the
value cannot be found, the default value will be passed to
the server.

RetryAfterConnectionError Boolean If this flag is set, the API will attempt to reconnect after a
connection loss until the reconnect succeeds. If the
connection can be re-established, all handles that were
created before the connection loss will be valid again.
Event handler methods will not have to be re-registered.

RetryInitialConnection Boolean If this flag is set to true, the API will try to connect to the
server even when the first connect did not succeed.

Note: Changes in the connection status should be monitored using a ServerStateChanged event handler. Connect is the
only method in the DaServerMgt namespace that can be called prior to establishing a connection. This can be tested at
any time with the IsConnected property.

ReturnCode Enumeration

Most ClientAce API methods will return a code indicating the level of success of the operation. The code may take one
of the following enumerated values. In the event that the function cannot satisfy the request due to invalid arguments
or unexpected errors, an exception will be thrown.

Value Description

ITEMANDQUALITYERROR An error was returned during operation for at least one item. The returned quality
for at least one item (either the same or different item) was not good. The items can
be determined by checking the ResultID and the quality field of the ItemIdentifier
array.

ITEMERROR For at least one item, an error was returned during operation. The item can be
determined by checking the ResultID of the ItemIdentifier array.

QUALITYNOTGOOD For at least one item, the returned quality was not good. The item can be
determined by checking the quality field of the ItemIdentifier array.

SUCCEEDED The function returned successfully.

UNSUPPORTEDUPDATERATE The function returned successfully, but the requested update was not supported by
the underlying server. The revised update will be returned to the client (Subscribe
and SubscriptionModify methods only).

Kepware.ClientAce.OpcDaClient Interface of DaServerMgt

For more information on a specific topic, select a link from the list below.

Creating DaServerMgt Object

Connect Method

Disconnect Method

IsConnected Property

ServerState Property

Browse Method

GetProperties Method

Subscribe Method

SubscriptionModify Method

SubscriptionAddItems Method

SubscriptionCancel Method

WriteAsync Method

Write Method

ReadAsync Method

Read Method

DataChanged Event

13

www.kepware.com

ClientAce OPC .NET Toolkit Help

ReadCompleted Event

WriteCompleted Event

ServerStateChanged Event

Creating DaServerMgt Object

The first step is to create an instance of DaServerMgt.

[Visual Basic]

Dim WithEvents daServerMgt As New Kepware.ClientAce.OpcDaClient.DAServerMgt

[C#]

DaServerMgt daServerMgt = new Kepware.ClientAce.OpcDaClient.DaServerMgt ();

Connect Method

[Visual Basic]

Connect (_

ByVal url As String, _

ByVal clientHandle As Integer, _

ByRef connectInfo As Kepware.ClientAce.OpcDaClient.ConnectInfo, _

ByRef connectFailed As Boolean _

)

[C#]

void Connect (

string url,

int clientHandle,

ref Kepware.ClientAce.OpcDaClient.ConnectInfo connectInfo,

out bool connectFailed

);

The Connect method establishes a connection with an OPC server.

Parameter Functionalities

URL The URL of the OPC servers.

Note: The syntax of the URL that uniquely identifies a server must follow this format:

[OpcSpecification]://[Hostname]/[ServerIdentifier]

OpcSpecification: Selects the OPC Specification to be used.
 opcda for OPC Data Access 2.05A respectively 3.0 (COM)Hostname: Name or IP address of

the machine that hosts the OPC server. For the local machine, localhost must be used.

14

www.kepware.com

ClientAce OPC .NET Toolkit Help

ServerIdentifier: Identifies the OPC server on the specified host.

 OPC COM DA – [ProgID]/[optional ClassID]

Note: For OPC DA servers, the API will attempt to connect using the ClassID first. If the ClassID is
not given, or is found to be invalid, the API will attempt to connect using the ProgID.

Examples:

opcda://localhost/OPCSample.OpcDaServer/{625c49a1-be1c-45d7-9a8a-14bedcf5ce6c}

opcda://PC_001/ KEPware.KEPServerEx.V4/{6e6170f0-ff2d-11d2-8087-00105aa8f840}

opcda://PC_001/ KEPware.KEPServerEx.V4

opcda://PC_001//{6e6170f0-ff2d-11d2-8087-00105aa8f840}

ClientHandle The client application can specify a handle to uniquely identify a server connection. The API will
return this handle in ServerStateChanged events.

ConnectInfo Additional connection options are specified using the connectInfo parameter. See Class
ConnectInfo for more information.

ConnectFailed Indicates whether or not the initial connection to the underlying server failed. This setting only
applies if the retryConnect flag was set in the connect call.

Examples

[Visual Basic]

' Declare variables

Dim url As String = "opcda://localhost/KEPware.OPCSampleServer/{6E617113-FF2D-
11D2-8087-00105AA8F840}"

Dim clientHandle As Integer = 1

Dim connectInfo As New Kepware.ClientAce.OpcDaClient.ConnectInfo

connectInfo.LocalID = "en"

connectInfo.KeepAliveTime = 5000

connectInfo.RetryAfterConnectionError = True

connectInfo.RetryInitialConnection = True

Dim connectFailed As Boolean

Try

 ' Call Connect API method

 daServerMgt.Connect(_

url, _

clientHandle, _

connectInfo, _

connectFailed)

 ' Check result

15

www.kepware.com

ClientAce OPC .NET Toolkit Help

 If connectFailed = True Then

 Console.WriteLine("Connect failed.")

 End If

Catch ex As Exception

 Console.WriteLine("Connect exception. Reason: " & ex.Message)

End Try

[C#]

// Declare variables

string url = "opcda://localhost/KEPware.OPCSampleServer/{6E617113-FF2D-11D2-8087-
00105AA8F840}";

int clientHandle = 1;

ConnectInfo connectInfo = new ConnectInfo();

connectInfo.LocalID = "en";

connectInfo.KeepAliveTime = 5000;

connectInfo.RetryAfterConnectionError = true;

connectInfo.RetryInitialConnection = true;

bool connectFailed;

try

{

// Call Connect API method

 daServerMgt.Connect(url, clientHandle, ref connectInfo, out connectFailed);

 // Check result

 if (connectFailed)

 {

 Console.WriteLine("Connect failed.");

 }

}

catch (Exception ex)

{

 Console.WriteLine("Connect exception. Reason: {0}", ex);

16

www.kepware.com

ClientAce OPC .NET Toolkit Help

}

Note 1: The IsConnected property indicates that a client application has successfully called the Connect method. This
does not necessarily indicate whether ClientAce is connected to the server. For example: This property would remain
true after a connection has failed and ClientAce is in the process of reconnecting. To test the ClientAce to server
connection state, use the ServerState property. The server connection state may also be monitored by implementing
the ServerStateChanged event handler.

Note 2: It is highly recommended that client applications wait at least 1 second after disconnecting from a server
before attempting to connect to that server again.

Disconnect Method

[Visual Basic]

Disconnect ()

[C#]

void Disconnect ();

Note: By calling the Disconnect method, the connection to the OPC Server is released. All subscriptions and resources
will be freed.

Examples

[Visual Basic]

If daServerMgt.IsConnected = True Then

 daServerMgt.Disconnect()

End If

[C#]

if (daServerMgt.IsConnected)

daServerMgt.Disconnect();

IsConnected Property

[Visual Basic

IsConnected () As Boolean

[C#]

bool IsConnected ();

Note: This property is used to check if the client application has successfully called the Connect method. Possible return
values are:

Value Description

True The client is connected to ClientAce

False The client is not connected to ClientAce

17

www.kepware.com

ClientAce OPC .NET Toolkit Help

Note: The IsConnected property indicates that a client application has successfully called the Connect method. It does
not necessarily indicate whether ClientAce is connected to the server. For example: Such a property would remain true
even after a connection has failed and ClientAce is in the process of reconnecting. To test the ClientAce to server
connection state, use the ServerState Property. To monitor the server connection state, implement the
ServerStateChanged event handler.

ServerState Property

[Visual Basic]

ServerState () As Kepware.ClientAce.OpcDaClient.ServerState

[C#]

Kepware.ClientAce.OpcDaClient.ServerState ServerState();

Use ServerState, not the IsConnected property, to determine the status of the server connection. Parameters:

Value Description

ServerState* Describes the current connection state between the ClientAce API
and the OPC server.

*For more information, refer to Enumerator ServerState.

Browse Method

[Visual Basic]

Browse (_

ByVal itemName As String, _

ByVal itemPath As String, _

ByRef continuationPoint As String, _

ByVal maxElementsReturned As Integer, _

ByVal browseFilter As Kepware.ClientAce.OpcDaClient.BrowseFilter, _

ByVal propertyIDs() As Integer, _

ByVal returnAllProperties As Boolean, _

ByVal returnPropertyValues As Boolean, _

ByRef browseElements() As Kepware.ClientAce.OpcDaClient.BrowseElement, _

ByRef moreElements As Boolean _

) As Kepware.ClientAce.OpcDaClient.ReturnCode

[C#]

As Kepware.ClientAce.OpcDaClient.ReturnCode Browse (

string itemName,

18

www.kepware.com

ClientAce OPC .NET Toolkit Help

string itemPath,

ref string continuationPoint,

int maxElementsReturned,

Kepware.ClientAce.OpcDaClient.BrowseFilter browseFilter,

int[] propertyIDs,

bool returnAllProperties,

bool returnPropertyValues,

out Kepware.ClientAce.OpcDaClient.BrowseElement[] browseElements,

out bool moreElements

);

The Browse method is used to search for tags in the address space of an OPC Server. The address space is usually
displayed in a tree structure because it is close to the outline of the items and branches of the internal hierarchical
structure of the server itself.

Parameter Functionality

itemName This parameter specifies the element (branch) for which all child elements will be obtained.
If an empty string is passed, the root level of the server will be browsed.

itemPath Reserved for future use.

continuationPoint If the number of returned elements is limited by the client (parameter
maxElementsReturned) or if the server limits the returned elements to a certain number,
this parameter is provided to specify a reference point for follow up Browse calls regarding
this element in the server's hierarchy.

If an OPC server returns a continuation point, the Browse must be called again with the
same parameters but using the returned Continuation Point to obtain missing child
elements of this node.

maxElementsReturned This parameter can be used to define the maximum number of elements the server should
return. If this value is set to 0, all elements will be returned.

browseFilter The BrowseFilter is used to define the type of elements to be returned. Possible values are
all, items or branches

propertyIDs This parameter is used to specify the properties that should be obtained when calling the
Browse. The properties will be returned in the associated BrowseElement. This will be
ignored if the returnAllProperties parameter is set to True.

returnAllProperties If the returnAllProperties flag is set to true, all properties of the items will be obtained
automatically. The properties will be returned in the associated BrowseElement.

returnPropertyValues If the returnPropertyValues flag is set to true, the values of the requested properties will be
returned.

browseElements This array contains all child elements of the element specified in ItemName.

moreElements The moreElements parameter indicates when not all child elements are returned.

Note 1: For more information on Return Value: ReturnCode, refer to ReturnCode Enumerator. In the event that the
function cannot satisfy the request due to invalid arguments or unexpected errors, an exception will be thrown.

Note 2: Before the Browse method is called, its parent DaServerMgt object must be connected to an OPC server using
the Connect method. Otherwise, a null reference exception will be thrown.

Examples

This example shows how to browse the entire namespace of the connected server using recursive functions calls. The

19

www.kepware.com

ClientAce OPC .NET Toolkit Help

results are placed in a tree view control named tvItems.

[Visual Basic]

' Create root node

tvItems.Nodes.Add("KepServerEx")

Dim rootNode As TreeNode = tvItems.Nodes(0)

' Browse from root

Browse("", rootNode)

' Additional code

Private Sub Browse(ByVal branchName As String, ByVal node As TreeNode)

 Dim itemName As String

 Dim itemPath As String

 Dim continuationPoint As String = ""

 Dim maxElementsReturned As Integer

 Dim browseFilter As Kepware.ClientAce.OpcDaClient.BrowseFilter

 Dim propertyIDs() As Integer

 Dim returnAllProperties As Boolean

 Dim returnPropertyValues As Boolean

 Dim browseElements() As Kepware.ClientAce.OpcDaClient.BrowseElement

 Dim moreElements As Boolean = True

 ' Set input parameters

 itemName = branchName

 itemPath = ""

 maxElementsReturned = 0

 browseFilter = Kepware.ClientAce.OpcDaClient.BrowseFilter.ALL

 propertyIDs = Nothing ' prevent Visual Studio warning

 returnAllProperties = True

 returnPropertyValues = False

 browseElements = Nothing ' prevent Visual Studio warning

 ' Call Browse API method

(Continued)

20

www.kepware.com

ClientAce OPC .NET Toolkit Help

(VB example continuation)

 Try

 While moreElements = True

 daServerMgt.Browse(itemName, _

 itemPath, _

 continuationPoint, _

 maxElementsReturned, _

 browseFilter, _

 propertyIDs, _

 returnAllProperties, _

 returnPropertyValues, _

 browseElements, _

 moreElements)

 ' Handle results

 Dim numberOfElementsReturned As Integer = _browseElements.GetLength(0)

 Dim element As Integer

 For element = 0 To numberOfElementsReturned - 1

 ' Add item to specified tree node

 node.Nodes.Add(browseElements(element).Name)

 ' Browse for item's children (recursive call!!!)

 If browseElements(element).HasChildren Then

 itemName = browseElements(element).ItemName

 Browse(browseElements(element).ItemName, node.Nodes(element))

 End If

 Next

 End While

 Catch ex As Exception

 MsgBox("Browse exception: " & ex.Message)

 End Try

End Sub

21

www.kepware.com

ClientAce OPC .NET Toolkit Help

[C#]

// Create root node

tvItems.Nodes.Add("KepServerEx");

TreeNode rootNode = tvItems.Nodes[0];

// Browse from root

Browse("", rootNode);

// Additional code

private void Browse(string branchName, TreeNode node)

{

// Declare parameters

 string itemName;

 string itemPath;

 string continuationPoint = "";

 int maxElementsReturned;

 BrowseFilter browseFilter;

 int[] propertyIDs = null;

 bool returnAllProperties;

 bool returnPropertyValues;

 BrowseElement[] browseElements = null;

 bool moreElements = true;

 // Set input parameters

 itemName = branchName;

 itemPath = "";

 maxElementsReturned = 0;

 browseFilter = BrowseFilter.ALL;

 returnAllProperties = true;

 returnPropertyValues = false;

(Continued)

(C# example continuation)

 // Call Browse API method

22

www.kepware.com

ClientAce OPC .NET Toolkit Help

 try

 {

 while (moreElements == true)

 {

 daServerMgt.Browse(itemName, itemPath, ref continuationPoint,

 maxElementsReturned, browseFilter, propertyIDs,

 returnAllProperties, returnPropertyValues, out browseElements, out

 moreElements);

 // Handle results

 int numberOfElementsReturned = browseElements.GetLength(0);

 int element;

 for (element = 0; element < numberOfElementsReturned; element++)

 {

 // Add item to specified tree node

 node.Nodes.Add(browseElements[element].Name);

 // Browse for item's children (recursive call!!!)

 if (browseElements[element].HasChildren)

 {

 itemName = browseElements[element].ItemName;

 Browse(browseElements[element].ItemName,node.Nodes[element]);

 }

 }

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine("Browse exception. Reason: {0}", ex);

 }

}

23

www.kepware.com

ClientAce OPC .NET Toolkit Help

Get Properties Method

[Visual Basic]

GetProperties (_

ByRef itemIdentifiers As Kepware.ClientAce.OpcDaClient.ItemIdentifier, _

ByVal propertyIDs() As Integer, _

ByVal returnAllProperties As Boolean, _

ByVal returnPropertyValues As Boolean, _

ByRef itemProperties() As Kepware.ClientAce.OpcDaClient.ItemProperties, _

) As Kepware.ClientAce.OpcDaClient.ReturnCode

[C#]

Kepware.ClientAce.OpcDaClient.ReturnCode GetProperties (

ref Kepware.ClientAce.OpcDaClient.ItemIdentifier[] itemIdentifiers,

int[] propertyIDs,

bool returnAllProperties,

bool returnPropertyValues,

out Kepware.ClientAce.OpcDaClient.ItemProperties[] itemProperties

);

Note: The GetProperties method is used to obtain the properties of OPC items.

Parameter Functionality

itemIdentifiers The array of itemIdentifiers is used to specify the OPC items you which to obtain the
properties of.

propertyIDs The IDs of the properties to be obtained by the GetProperties call. The properties will be
returned in the associated itemProperties element. This will be ignored if the
returnAllProperties parameter is set to True.

returnAllProperties If this flag is set to True, all properties of the items will be obtained automatically. The
properties will be returned in the associated itemProperties element.

returnPropertyValues The property values will be returned if this flag is set to True.

itemProperties This array contains ItemProperty objects describing the requested properties of the items.

Note: For more information on Return Value: ReturnCode, refer to ReturnCode Enumerator. In the event that the
function cannot satisfy the request due to invalid arguments or unexpected errors, an exception will be thrown.

Examples

This example shows how to get the access rights and data type properties of a single item Channel_1.Device_1.
Tag_1.

[Visual Basic]

' Declare variables

24

www.kepware.com

ClientAce OPC .NET Toolkit Help

Dim itemIdentifiers(0) As Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_1"

Dim propertyIDs(1) As Integer

propertyIDs(0) = Kepware.ClientAce.OpcDaClient.PropertyID.ACCESSRIGHTS

propertyIDs(1) = Kepware.ClientAce.OpcDaClient.PropertyID.DATATYPE

Dim returnAllProperties As Boolean = False

Dim returnPropertyValues As Boolean = True

Dim itemProperties() As Kepware.ClientAce.OpcDaClient.ItemProperties

Try

 ' Call GetProperties API method

 daServerMgt.GetProperties(_

 itemIdentifiers, _

 propertyIDs, _

 returnAllProperties, _

 returnPropertyValues, _

 itemProperties)

 ' Handle results

 Dim itemProperty As Kepware.ClientAce.OpcDaClient.ItemProperty

 For Each itemProperty In itemProperties(0).RequestedItemProperties

 Dim propertyDescription As String = itemProperty.Description()

 Dim propertyValue As String = itemProperty.Value.ToString()

 Console.WriteLine(_

 "Property: " & propertyDescription & _

 " Value: " & propertyValue)

 Next

Catch ex As Exception

 Console.WriteLine("GetProperties exception. Reason: " & ex.Message)

 End Try

[C#]

25

www.kepware.com

ClientAce OPC .NET Toolkit Help

// Declare variables

ItemIdentifier[] itemIdentifiers = new ItemIdentifier[1];

itemIdentifiers[0] = new ItemIdentifier();

itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_1";

int[] propertyIDs = new int[2];

propertyIDs[0] = (int)PropertyID.ACCESSRIGHTS;

propertyIDs[1] = (int)PropertyID.DATATYPE;

bool returnAllProperties = false;

bool returnPropertyValues = true;

ItemProperties[] itemProperties = null;

try

{

 // Call GetProperties API method

daServerMgt.GetProperties(ref itemIdentifiers, propertyIDs,
returnAllProperties, returnPropertyValues, out itemProperties);

 // Handle results

foreach (ItemProperty itemProperty in itemProperties[0].
RequestedItemProperties)

 {

 string propertyDescription = itemProperty.Description;

 string propertyValue = itemProperty.Value.ToString();

 Console.WriteLine("Property: {0} Value: {1}",

 propertyDescription,

 propertyValue);

 }

}

 catch (Exception ex)

{

 Console.WriteLine("GetProperties exception. Reason: {0}", ex);

}

26

www.kepware.com

ClientAce OPC .NET Toolkit Help

Subscribe Method

[Visual Basic]

Subscribe (_

ByVal clientSubscription As Integer, _

ByVal active As Boolean, _

ByVal updateRate As Integer, _

ByRef revisedUpdateRate As Integer, _

ByVal deadband As Single, _

ByRef itemIdentifiers() As Kepware.ClientAce.OpcDaClient.ItemIdentifier, _

ByRef serverSubscription As Integer _

) As Kepware.ClientAce.OpcDaClient.ReturnCode

[C#]

Kepware.ClientAce.OpcDaClient.ReturnCode Subscribe (

int clientSubscription,

bool active,

int updateRate,

out int revisedUpdateRate,

float deadband,

ref Kepware.ClientAce.OpcDaClient.ItemIdentifier[] itemIdentifiers,

out int serverSubscription

);

The Subscribe method is used to register items for monitoring. The server will continuously scan the subscribed items
at the specified update rate and notify the ClientAce API when any item's values or quality changes. The ClientAce API
will relay this information to the client application via DataChanged events. This relieves the client of having to make
continuous calls to Read or ReadAsync to poll a set of items and can greatly improve the performance of the client
application and server.

Parameter Functionality

clientSubscription With this parameter, a meaningful handle may be assigned to each subscription. This value
will be returned in each DataChanged event and provides a means of indicating which
subscription the data update is for.

active This parameter is used to create the subscription as active or inactive. The server will scan
the items in a subscription only when the subscription is active. The active state may be
changed at any time with the SubscriptionModify Method. The subscription active state
can be used to optimize the application by signaling the server to stop scanning items that
are not currently of interest.

updateRate With this parameter, the rate at which the server scans the subscribed items can be
specified. This is a requested rate - the actual update rate will be decided by the server at
the time of this call, but can still vary depending on demands on the server and data

27

www.kepware.com

ClientAce OPC .NET Toolkit Help

source. Update rate values must be in milliseconds.

revisedUpdateRate This out parameter returns the update rate set by the OPC server, which can be different
from the requested updateRate. The revised update rate will be in milliseconds.

deadband The deadband parameter specifies the minimum deviation needed for the server to notify
the client of a change of value. The deadband is given a percent (0.0–100.0) of the range
of the value. The range is given by the EU Low and EU High properties of the item. A
deadband of 0.0 will result in the server notifying the client of all changes in the item's
value. The Subscribe method will throw an exception if an invalid deadband value is
specified.

itemIdentifiers The array of itemIdentifiers is used to specify the OPC items that should be added to the
subscription.

serverSubscription The API will assign a unique handle for each subscription. This handle is returned through
this parameter and should be stored for later use. The server subscription handle must be
specified when modifying or canceling a subscription.

Note 1: The return code indicates the overall success of the call. If this code indicates an item-specific error
(ITEMERROR), each of the ReturnID objects should be examined in order to determine which items could not be added
to the subscription and why. The return code will also indicate if the requested update rate is not supported by the
server. In the event that the function cannot satisfy the request (due to invalid arguments or unexpected errors), an
exception will be thrown. For more information on Return Value:Return Code, refer to ReturnCode Enumerator.

Note 2: The server will send an initial update for all items added to an active subscription.

Note 3: In order for the server to return item values with a particular data type, that particular type must be requested
with the ItemIdentifier.DataType property. The ResultID will indicate if the server is able to provide the value as the
requested type. If the requested type cannot be provided, the values will be sent in their canonical (default) data type.

Examples

This example show how to create a new subscription for the two items Channel_1.Device_1.Tag_1 and Channel_1.
Device_1.Tag_2.

[Visual Basic]

' Declare variables

Dim clientSubscription As Integer = 1

Dim active As Boolean = True

Dim updateRate As Integer = 500

Dim revisedUpdateRate As Integer

Dim deadband As Single = 0

Dim itemIdentifiers(1) As Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_1"

itemIdentifiers(0).ClientHandle = 1 ' Assign unique handle

itemIdentifiers(1) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(1).ItemName = "Channel_1.Device_1.Tag_2"

itemIdentifiers(1).ClientHandle = 2 ' Assign unique handle

Dim serverSubscription As Integer

28

www.kepware.com

ClientAce OPC .NET Toolkit Help

Try

 ' Call Subscribe API method

 daServerMgt.Subscribe(_

 clientSubscription, active, updateRate, _

 revisedUpdateRate, deadband, itemIdentifiers, serverSubscription)

 ' Check results

 Dim item As Kepware.ClientAce.OpcDaClient.ItemIdentifier

 For Each item In itemIdentifiers

 If item.ResultID.Succeeded = False Then

 Console.WriteLine("Subscribe failed for item: " & item.ItemName)

 End If

 Next

Catch ex As Exception

 Console.WriteLine("Subscribe exception. Reaseon: " & ex.Message)

End Try

[C#]

// Declare variables

int clientSubscription = 1;

bool active = true;

int updateRate = 500;

int revisedUpdateRate;

float deadband = 0;

ItemIdentifier[] itemIdentifiers = new ItemIdentifier[2];

itemIdentifiers[0] = new ItemIdentifier();

itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_1";

itemIdentifiers[0].ClientHandle = 1; // Assign unique handle

itemIdentifiers[1] = new ItemIdentifier();

itemIdentifiers[1].ItemName = "Channel_1.Device_1.Tag_2";

itemIdentifiers[1].ClientHandle = 2; // Assign unique handle

int serverSubscription;

29

www.kepware.com

ClientAce OPC .NET Toolkit Help

ReturnCode returnCode;

try

{ // Call Subscribe API method

returnCode = daServerMgt.Subscribe(clientSubscription, active, updateRate, out
revisedUpdateRate, deadband, ref itemIdentifiers, out serverSubscription);

 // Check results if (returnCode != ReturnCode.SUCCEEDED)

 { foreach (ItemIdentifier item in itemIdentifiers)

 { if (!item.ResultID.Succeeded)

 { Console.WriteLine("Subscribe failed for item {0}", item.ItemName);

 }

 }

 }

}catch (Exception ex)

{Console.WriteLine("Subscribe exception. Reason: {0}", ex);

}

SubscriptionModify Method

[Visual Basic]

SubscriptionModify (_

ByVal serverSubscription As Integer, _

ByVal active As Boolean, _

ByVal updateRate As Integer, _

ByRef revisedUpdateRate As Integer, _

ByVal deadband As Single _

) Kepware.ClientAce.OpcDaClient.ReturnCode

SubscriptionModify (_

ByVal serverSubscription As Integer, _

ByVal active As Boolean _

) Kepware.ClientAce.OpcDaClient.ReturnCode

SubscriptionModify (_

30

www.kepware.com

ClientAce OPC .NET Toolkit Help

ByVal serverSubscription As Integer, _

ByVal updateRate As Integer, _

ByRef revisedUpdateRate As Integer _

) Kepware.ClientAce.OpcDaClient.ReturnCode

SubscriptionModify (_

ByVal serverSubscription As Integer, _

ByVal deadband As Single _

) Kepware.ClientAce.OpcDaClient.ReturnCode

[C#]

Kepware.ClientAce.OpcDaClient.ReturnCode SubscriptionModify (

int serverSubscription,

bool active,

int updateRate,

out int revisedUpdateRate,

float deadband

);

Kepware.ClientAce.OpcDaClient.ReturnCode SubscriptionModify (

int serverSubscription,

bool active

);

Kepware.ClientAce.OpcDaClient.ReturnCode SubscriptionModify (

int serverSubscription,

int updateRate,

out int revisedUpdateRate

);

Kepware.ClientAce.OpcDaClient.ReturnCode SubscriptionModify (

int serverSubscription,

float deadband

);

The SubscriptionModify method is used to modify the properties of an existing subscription created with the Subscribe

31

www.kepware.com

ClientAce OPC .NET Toolkit Help

method. There are three overloads available to change the active, UpdateRate and Deadband subscription properties
separately.

Parameter Functionality

serverSubscription This parameter identifies the subscription within the API. This handle was returned by the
Subscribe method when the subscription was created. The API will throw an exception if an
invalid handle is specified.

active This parameter is used to make the subscription as active or inactive. When the
subscription is active, the server will scan the items and provide data change notifications.

updateRate This parameter is used to specify the rate at which the server scans the subscribed items.
This is a requested rate: the actual update rate will be decided by the server at the time of
this call, and can vary depending on demands on the server and data source. Update rate
values must be in milliseconds.

revisedUpdateRate This parameter returns the update rate set by the OPC server, which can be different from
the requested updateRate. The revised update rate will be in milliseconds.

deadband The deadband parameter specifies the minimum deviation needed for the server to notify
the client of a change of value. The deadband is given a percent (0.0–100.0) of the range
of the value. The range is given by the EU Low and EU High properties of the item. A
deadband of 0.0 will result in the server notifying the client of all changes in the item's
value. The API will throw an exception if an invalid deadband value is specified.

Note: The return code indicates the overall success of the call. If the code indicates an item-specific error
(ITEMERROR), each of the ReturnID objects should be examined in order to determine which items could not be added
to the subscription and why. The return code will also indicate if the requested update rate is not supported by the
server. In the event that the function cannot satisfy the request due to invalid arguments or unexpected errors, an
exception will be thrown. For more information on Return Value:Return Code, refer to ReturnCode Enumerator.

Examples

This example modifies the properties of an existing subscription that was created with the Subscribe method.

[Visual Basic]

' Declare variables

Dim serverSubscription As Integer ' Assign handle return from Subscribe

Dim active As Boolean = True

Dim updateRate As Integer = 1000

Dim revisedUpdateRate As Integer

Dim deadband As Single = 0

Try

 ' Call SubscriptionModify API method

 daServerMgt.SubscriptionModify(_

 serverSubscription, _

 active, _

 updateRate, _

 revisedUpdateRate, _

 deadband)

32

www.kepware.com

ClientAce OPC .NET Toolkit Help

Catch ex As Exception

 Console.WriteLine("SubscriptionModify exception. Reason: " & _

 ex.Message)

End Try

[C#]

// Declare variables

int serverSubscription = 0; // Assign handle return from Subscribe

bool active = true;

int updateRate = 1000;

int revisedUpdateRate;

float deadband = 0;

try

{

 // Call SubscriptionModify API method

daServerMgt.SubscriptionModify(serverSubscription, active, updateRate, out
revisedUpdateRate, deadband);

}

catch (Exception ex)

{

 Console.WriteLine("SubscriptionModify exception. Reason: {0}", ex);

}

SubscriptionAddItems Method

[Visual Basic]

SubscriptionAddItems (_

ByVal serverSubscription As Integer, _

ByRef itemIdentifiers() As Kepware.ClientAce.OpcDaClient.ItemIdentifier _

) As Kepware.ClientAce.OpcDaClient.ReturnCode

[C#]

Kepware.ClientAce.OpcDaClient.ReturnCode SubscriptionAddItems (

33

www.kepware.com

ClientAce OPC .NET Toolkit Help

int serverSubscription,

ref Kepware.ClientAce.OpcDaClient.ItemIdentifier[] itemIdentifiers

);

The SubscriptionAddItems method is used to add items to an existing subscription created with the Subscribe method.

Parameter Functionality

serverSubscription This parameter identifies the subscription within the API. This handle was returned by the
Subscription method when the subscription was created. The API will throw an exception if
an invalid handle is specified.

itemIdentifiers The array itemIdentifiers specifies the OPC items that should be added to the subscription.

Note 1: The return code indicates the overall success of the call. If this code indicates an item-specific error
(ITEMERROR), each of the ReturnID objects should be examined to determine which items could not be added to the
subscription and why. In the event that the function cannot satisfy the request due to invalid arguments or unexpected
errors, an exception will be thrown. For more information on Return Value:Return Code, refer to ReturnCode
Enumerator.

Note 2: The server will send an initial update for all items added to an active subscription.

Note 3: In order for the server to return item values with a particular data type, that particular type must be requested
with the ItemIdentifier.DataType property. The ResultID will indicate if the server is able to provide the value as the
requested type. If the requested type cannot be provided, the values will be sent in their canonical (default) data type.

Examples

This example adds the items Channel_1.Device_1.Tag_3 and Channel_1.Device_1.Tag_4 to an existing
subscription, created with the Subscribe method.

[Visual Basic]

' Declare variables

Dim serverSubscription As Integer ' Assign handle return from Subscribe

Dim itemIdentifiers(1) As Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_3"

itemIdentifiers(0).ClientHandle = 3 ' Assign unique handle

itemIdentifiers(1) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(1).ItemName = "Channel_1.Device_1.Tag_4"

itemIdentifiers(1).ClientHandle = 4 ' Assign unique handle

Try

 ' Call SubscriptionAddItems API method

 daServerMgt.SubscriptionAddItems(_

 serverSubscription, _

 itemIdentifiers)

34

www.kepware.com

ClientAce OPC .NET Toolkit Help

 ' Check item results

 Dim item As Kepware.ClientAce.OpcDaClient.ItemIdentifier

 For Each item In itemIdentifiers

 If item.ResultID.Succeeded = False Then

 Console.WriteLine("SubscriptionAddItems failed for item: " & _

 item.ItemName)

 End If

 Next

Catch ex As Exception

 Console.WriteLine("SubscriptionAddItems exception. Reason: " & _

 ex.Message)

End Try

[C#]

// Declare variables

int serverSubscription = 0; // Assign handle return from Subscribe

ItemIdentifier[] itemIdentifiers = new ItemIdentifier[2];

itemIdentifiers[0] = new ItemIdentifier();

itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_3";

itemIdentifiers[0].ClientHandle = 3; // Assign unique handle

itemIdentifiers[1] = new ItemIdentifier();

itemIdentifiers[1].ItemName = "Channel_1.Device_1.Tag_4";

itemIdentifiers[1].ClientHandle = 4; // Assign unique handle

ReturnCode returnCode;

try

{ // Call SubscriptionAddItems API method

returnCode = daServerMgt.SubscriptionAddItems(serverSubscription, ref
itemIdentifiers);

 // Check item results

 if (returnCode != ReturnCode.SUCCEEDED)

 {

35

www.kepware.com

ClientAce OPC .NET Toolkit Help

 foreach (ItemIdentifier item in itemIdentifiers)

 {

 if (!item.ResultID.Succeeded)

 {

Console.WriteLine("SubscriptionAddItems failed for
item: {0}", item.ItemName);

 }

 }

 }

}

catch (Exception ex)

{ Console.WriteLine("SubscriptionAddItems exception. Reason: {0}", ex) }

SubscriptionRemoveItems Method

[Visual Basic]

SubscriptionRemoveItems (_

ByVal serverSubscription As Integer, _

ByRef itemIdentifiers() As Kepware.ClientAce.OpcDaClient.ItemIdentifier _

) As Kepware.ClientAce.OpcDaClient.ReturnCode

[C#]

Kepware.ClientAce.OpcDaClient.ReturnCode SubscriptionRemoveItems (

int serverSubscription,

ref Kepware.ClientAce.OpcDaClient.ItemIdentifier[] itemIdentifiers

);

The SubscriptionRemoveItems method removes items from an existing subscription that was created with the Subscribe
method.

Parameter Functionality

serverSubscription This parameter identifies the subscription within the API. This handle was returned by the
Subscribe method when the subscription was created. The API will throw an exception if an
invalid handle is specified.

itemIdentifiers The array itemIdentifiers specifies the OPC items that should be removed from the
Subscription.

The return code indicates the overall success of the call. If the code indicates an item-specific error (ITEMERROR), each
of the ReturnID objects should be examined in order to determine which items could not be removed from the
subscription and why. In the event that the function cannot satisfy the request due to invalid arguments or unexpected

36

www.kepware.com

ClientAce OPC .NET Toolkit Help

errors, an exception will be thrown. For more information on Return Value:Return Code, refer to ReturnCode
Enumerator.

Examples

This example removes the items Channel_1.Device_1.Tag_1 and Channel_1.Device_1.Tag_2 from an existing
subscription that was created with the Subscribe method.

[Visual Basic]

' Declare variables

Dim serverSubscription As Integer ' Assign handle return from Subscribe

Dim itemIdentifiers(1) As Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_3"

itemIdentifiers(0).ClientHandle = 3 ' Assign unique handle

itemIdentifiers(1) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(1).ItemName = "Channel_1.Device_1.Tag_4"

itemIdentifiers(1).ClientHandle = 4 ' Assign unique handle

Try

 ' Call SubscriptionRemoveItems API method

 daServerMgt.SubscriptionRemoveItems(_

 serverSubscription, _

 itemIdentifiers)

 ' Check item results

 Dim item As Kepware.ClientAce.OpcDaClient.ItemIdentifier

 For Each item In itemIdentifiers

 If item.ResultID.Succeeded = False Then

 Console.WriteLine(_

 "SubscriptionRemoveItems failed for item: " & _

 item.ItemName)

 End If

 Next

Catch ex As Exception

 Console.WriteLine("SubscriptionRemoveItems exception. Reason: " & _

37

www.kepware.com

ClientAce OPC .NET Toolkit Help

 ex.Message)

End Try

[C#]

// Declare variables

int serverSubscription = 0; // Assign handle return from Subscribe

ItemIdentifier[] itemIdentifiers = new ItemIdentifier[2];

itemIdentifiers[0] = new ItemIdentifier();

itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_3";

itemIdentifiers[0].ClientHandle = 3; // Assign unique handle

itemIdentifiers[1] = new ItemIdentifier();

itemIdentifiers[1].ItemName = "Channel_1.Device_1.Tag_4";

itemIdentifiers[1].ClientHandle = 4; // Assign unique handle

ReturnCode returnCode;

try

{ // Call SubscriptionRemoveItems API method

 returnCode = daServerMgt.SubscriptionRemoveItems(serverSubscription,

ref itemIdentifiers);

 // Check item results

 if (returnCode != ReturnCode.SUCCEEDED)

 {

 foreach (ItemIdentifier item in itemIdentifiers)

 {

 if (!item.ResultID.Succeeded)

 {

Console.WriteLine("SubscriptionRemoveItems failed for
item: {0}", item.ItemName);

 }

 }

 }

}

38

www.kepware.com

ClientAce OPC .NET Toolkit Help

catch (Exception ex)

{ Console.WriteLine("SubscriptionRemoveItems exception. Reason: {0}", ex); }

SubscriptionCancel Method

[Visual Basic]

SubscriptionCancel (_

ByVal serverSubscription As Integer _

) As Kepware.ClientAce.OpcDaClient.ReturnCode

[C#]

Kepware.ClientAce.OpcDaClient.ReturnCode SubscriptionCancel (

int serverSubscription

);

The SubscriptionCancel method is used to cancel an existing subscription created with the Subscribe method.

Parameter Functionality

serverSubscription This parameter identifies the subscription within the API. This handle was returned by the
Subscribe method when the subscription was created. The API will throw an exception if an
invalid handle is specified.

Note: In the event that the function cannot satisfy the request due to invalid arguments or unexpected errors, an
exception will be thrown. For more information on Return Value: Return Code, refer to ReturnCode Enumerator.

Examples

[Visual Basic]

' Declare variables

Dim serverSubscription As Integer ' Assign handle return from Subscribe

Try

 daServerMgt.SubscriptionCancel(serverSubscription)

Catch ex As Exception

 Console.WriteLine("SubscriptionCancel exception. Reason: " & _

 ex.Message)

End Try

[C#]

// Declare variables

int serverSubscription = 0; // Assign handle return from Subscribe

39

www.kepware.com

ClientAce OPC .NET Toolkit Help

try

{

 // Call SubscriptionCancel API method

 daServerMgt.SubscriptionCancel(serverSubscription);

}

catch (Exception ex)

{

 Console.WriteLine("SubscriptionCancel exception. Reason: {0}", ex);

}

WriteAsync Method

[Visual Basic]

WriteAsync(_

ByVal transactionHandle As Integer, _

ByRef itemIdentifiers() As kepware.ClientAce.OpcDaClient.ItemIdentifier, _

ByVal itemValues() As kepware.ClientAce.OpcDaClient.ItemValue _

) As Kepware.ClientAce.OpcDaClient.ReturnCode

[C#]

Kepware.ClientAce.OpcDaClient.ReturnCode WriteAsync (

int transactionHandle,

ref Kepware.ClientAce.OpcDaClient.ItemIdentifier[] itemIdentifiers,

Kepware.ClientAce.OpcDaClient.ItemValue[] itemValues

);

Parameter Functionality

transactionHandle The API will return the specified handle along with the requested values in a
WriteCompleted event. Thus, a WriteCompleted event can be correlated with a particular
call to WriteAsync.

itemIdentifiers The array of itemIdentifiers is used to specify the OPC items that should be read. Possible
item-specific errors will be returned in the ResultID object of the associated ItemIdentifier.

The API will also set the ServerHandle property. It is recommended that ItemIdentifier
objects be stored if repeated reads and writes of the same objects are intended. The API
will make use of the ServerHandle values to optimize OPC calls to the server.

itemValues The array itemValues contains the Values to be written to the OPC server.

Note 1: The return code indicates the overall success of the call. If this code indicates an item-specific error (such as,

40

www.kepware.com

ClientAce OPC .NET Toolkit Help

ITEMERROR or ITEMANDQUALITYERROR), each of the ReturnID objects should be examined in order to determine
which items could not be read and why. In the event that the function cannot satisfy the request (due to invalid
arguments or unexpected errors) an exception will be thrown. For more information on Return Value:Return Code, refer
to ReturnCode Enumerator.

Note 2: More than one item may be written at a time with the WriteAsync method. Because single multi-item writes
can be executed more efficiently than a series of single-item writes, using multi-item writes is recommended whenever
it is possible.

Examples

This example writes the value "111" to tag Channel_1.Device_1.Tag_1, and "222" to tag Channel_1.Device_1.
Tag_2.

[Visual Basic]

' Declare variables

Dim transactionHandle As Integer = 0

Dim itemIdentifiers(1) As Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_1"

itemIdentifiers(0).ClientHandle = 1 ' Assign unique handle

itemIdentifiers(1) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(1).ItemName = "Channel_1.Device_1.Tag_2"

itemIdentifiers(0).ClientHandle = 2 ' Assign unique handle

Dim itemValues(1) As Kepware.ClientAce.OpcDaClient.ItemValue

itemValues(0) = New Kepware.ClientAce.OpcDaClient.ItemValue

itemValues(0).Value = "111"

itemValues(1) = New Kepware.ClientAce.OpcDaClient.ItemValue

itemValues(1).Value = "222"

Dim returnCode As Kepware.ClientAce.OpcDaClient.ReturnCode

Try

 ' Call WriteAsync API method

 returnCode = daServerMgt.WriteAsync(transactionHandle, itemIdentifiers, _

 itemValues)

 ' Check result

 If returnCode <> _

 Kepware.ClientAce.OpcDaClient.ReturnCode.SUCCEEDED Then

 Console.WriteLine("Write request failed for one or more items")

41

www.kepware.com

ClientAce OPC .NET Toolkit Help

‘ Examine ResultID objects for detailed information.

 End If

Catch ex As Exception

 Console.WriteLine("WriteAsync exception. Reason: " & ex.Message)

End Try

[C#]

// Declare variables

int transactionHandle = 0;

ItemIdentifier[] itemIdentifiers = new ItemIdentifier[2];

itemIdentifiers[0] = new ItemIdentifier();

itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_1";

itemIdentifiers[0].ClientHandle = 1; // Assign unique handle

itemIdentifiers[1] = new ItemIdentifier();

itemIdentifiers[1].ItemName = "Channel_1.Device_1.Tag_2";

itemIdentifiers[1].ClientHandle = 2; // Assign unique handle

ItemValue[] itemValues = new ItemValue[2];

itemValues[0] = new ItemValue();

itemValues[0].Value = "111";

itemValues[1] = new ItemValue();

itemValues[1].Value = "222";

ReturnCode returnCode;

try

{ // Call WriteAsync API method

 returnCode = daServerMgt.WriteAsync(transactionHandle, ref
itemIdentifiers, itemValues);

 // Check item results

 if (returnCode != ReturnCode.SUCCEEDED)

 { Console.WriteLine("Write request failed for one or more items");

 // Examine ResultID objects for detailed information.

 }

42

www.kepware.com

ClientAce OPC .NET Toolkit Help

}

catch (Exception ex)

{ Console.WriteLine("WriteAsync exception. Reason: {0}", ex); }

Write Method

[Visual Basic]

<

Write (_

ByRef itemIdentifiers() As Kepware.ClientAce.OpcDaClient.ItemIdentifier, _

ByVal itemValues() As Kepware.ClientAce.OpcDaClient.ItemValue _

) As Kepware.ClientAce.OpcDaClient.ReturnCode

[C#]

Kepware.ClientAce.OpcDaClient.ReturnCode Write (

ref Kepware.ClientAce.OpcDaClient.ItemIdentifier[] itemIdentifiers,

Kepware.ClientAce.OpcDaClient.ItemValue[] itemValues

);

The Write method is used to write one or more values to the OPC server.

Parameter Functionality

itemIdentifiers The array of itemIdentifiers is used to specify the OPC
items that should be written. Possible item-specific
errors will be returned in the ResultID object of the
associated ItemIdentifier.

The API will also set the ServerHandle property. It is
recommended that ItemIdentifier objects be stored if
repeated reads and writes of the same objects are
intended. The API will make use of the ServerHandle
values to optimize OPC calls to the server.

itemValues The array itemValues contains the values to be written to
the OPC server.

Note 1: The return code indicates the overall success of the call. If this code indicates an item-specific error(such as,
ITEMERROR), each of the ReturnID objects should be examined in order to determine which items could not be read
and why. In the event that the function cannot satisfy the request (due to invalid arguments or unexpected errors) an
exception will be thrown. For more information on Return Value: Return Code, refer to ReturnCode Enumerator.

Note 2: Because single multi-item writes can be executed more efficiently than a series of single-item writes, using
multi-item writes is recommended whenever it is possible.

Examples

This example writes the value "111" to tag Channel_1.Device_1.Tag_1, and "222" to tag Channel_1.Device_1.
Tag_2.

43

www.kepware.com

ClientAce OPC .NET Toolkit Help

[Visual Basic]

' Declare variables

Dim itemIdentifiers(1) As Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_1"

itemIdentifiers(1) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(1).ItemName = "Channel_1.Device_1.Tag_2"

Dim itemValues(1) As Kepware.ClientAce.OpcDaClient.ItemValue

itemValues(0) = New Kepware.ClientAce.OpcDaClient.ItemValue

itemValues(0).Value = "111"

itemValues(1) = New Kepware.ClientAce.OpcDaClient.ItemValue

itemValues(1).Value = "222"

Try

 ' Call Write API method

 daServerMgt.Write(itemIdentifiers, itemValues)

 ' Check item results

 Dim item As Kepware.ClientAce.OpcDaClient.ItemIdentifier

 For Each item In itemIdentifiers

 If item.ResultID.Succeeded = False Then

 Console.WriteLine("Write failed for item: " & item.ItemName)

 End If

 Next

Catch ex As Exception

 Console.WriteLine("Write exception. Reason: " & ex.Message)

End Try

[C#]

// Declare variables

ItemIdentifier[] itemIdentifiers = new ItemIdentifier[2];

itemIdentifiers[0] = new ItemIdentifier();

itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_1";

44

www.kepware.com

ClientAce OPC .NET Toolkit Help

itemIdentifiers[1] = new ItemIdentifier();

itemIdentifiers[1].ItemName = "Channel_1.Device_1.Tag_2";

ItemValue[] itemValues = new ItemValue[2];

itemValues[0] = new ItemValue();

itemValues[0].Value = "111";

itemValues[1] = new ItemValue();

itemValues[1].Value = "222";

ReturnCode returnCode;

try

{ // Call Write API method

 returnCode = daServerMgt.Write(ref itemIdentifiers, itemValues);

 // Check item results

 if (returnCode != ReturnCode.SUCCEEDED)

 { foreach (ItemIdentifier item in itemIdentifiers)

 {

 if (!item.ResultID.Succeeded)

 {

Console.WriteLine("Write failed for item: {0}", item.
ItemName);

 }

 }

 }

}

catch (Exception ex)

{ Console.WriteLine("Write exception. Reason: {0}", ex); }

ReadAsync Method

[Visual Basic]

ReadAsync (_

ByVal transactionHandle As Integer, _

ByVal maxAge As Integer, _

45

www.kepware.com

ClientAce OPC .NET Toolkit Help

ByRef itemIdentifiers() as Kepware.ClientAce.OpcDaClient.ItemIdentifier _

) As Kepware.ClientAce.OpcDaClient.ReturnCode

[C#]

Kepware.ClientAce.OpcDaClient.ReturnCode ReadAsync (

int transactionHandle,

int maxAge,

ref Kepware.ClientAce.OpcDaClient.ItemIdentifier[] itemIdentifiers

);

Items of an OPC Server can be read asynchronously using the ReadAsync method. The read values are returned in the
ReadCompleted event. It is strongly recommended that a Subscription be used if the items are read cyclically (and the
changed data be received in the DataChanged event).

Parameter Functionality

maxAge Specifies whether or not the server should return a value
from cache or from the device for the specified items. If
the freshness of the items cached value is within the
maxAge, the cache value will be returned. Otherwise, the
server will obtain the data from device. The value of
maxAge must be in milliseconds.

Supported for OPC DA 3.0 servers only.

Note: If maxAge is set to 0, the server will always
obtain the data from device.

itemIdentifiers The array of itemIdentifiers is used to specify the OPC
items that should be read. Possible item-specific errors
will be returned in the ResultID object of the associated
ItemIdentifier.

The API will also set the ServerHandle property. It is
recommended that ItemIdentifier objects be stored if
repeated reads and writes of the same objects are
intended. The API will make use of the ServerHandle
values to optimize OPC calls to the server.

transactionHandle The API will return the specified handle along with the
requested values in a ReadCompleted event. Thus, a
ReadCompleted event may be correlated with a
particular call to ReadAsync.

Note 1: The return code indicates the overall success of the call. If this code indicates an item-specific error (such as,
ITEMERROR, QUALITYNOTGOOD or ITEMANDQUALITYERROR) each of the ReturnID objects should be examined in
order to determine which items could not be read and why. In the event that the function cannot satisfy the request
(due to invalid arguments or unexpected errors), an exception will be thrown. For more information on Return Value:
ReturnCode, refer to ReturnCode Enumerator.

Note 2: The ReadAsynch method allows more than one item to be read at a time. Because single multi-item writes can
be executed more efficiently than a series of single-item writes, using multi-item writes is recommended whenever it is
possible.

Note 3: If a particular data type is desired, specify ItemIdentifier.DataType. Because it is a requested type, it may
not be honored. The ResultID of the item will indicate if the server was not able to read the item due to an unsupported
data type.

Examples

46

www.kepware.com

ClientAce OPC .NET Toolkit Help

This example reads two items: Channel_1.Device_1.Tag_1 and Channel_1.Device_1.Tag_2.

[Visual Basic]

' Declare variables

Dim transactionHandle As Integer = 0

Dim maxAge As Integer = 0

Dim itemIdentifiers(1) As Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_1"

itemIdentifiers(0).ClientHandle = 1 ' Assign unique handle

itemIdentifiers(1) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(1).ItemName = "Channel_1.Device_1.Tag_2"

itemIdentifiers(1).ClientHandle = 2 ' Assign unique handle

Dim returnCode As Kepware.ClientAce.OpcDaClient.ReturnCode

Try

 ' Call ReadAsync API method

 returnCode = daServerMgt.ReadAsync(_

 transactionHandle, _

 maxAge, _

 itemIdentifiers)

 ' Check result

 If returnCode <> _

 Kepware.ClientAce.OpcDaClient.ReturnCode.SUCCEEDED Then

 Console.WriteLine("ReadAsync failed for one or more items")

 ‘ Examine ResultID objects for detailed information.

 End If

Catch ex As Exception

 Console.WriteLine("ReadAsync exception. Reason: " & ex.Message)

End Try

[C#]

// Declare variables

47

www.kepware.com

ClientAce OPC .NET Toolkit Help

int transactionHandle = 0;

int maxAge = 0;

ItemIdentifier[] itemIdentifiers = new ItemIdentifier[2];

itemIdentifiers[0] = new ItemIdentifier();

itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_1";

itemIdentifiers[0].ClientHandle = 1; // Assign unique handle

itemIdentifiers[1] = new ItemIdentifier();

itemIdentifiers[1].ItemName = "Channel_1.Device_1.Tag_2";

itemIdentifiers[1].ClientHandle = 2; // Assign unique handle

ReturnCode returnCode;

try

{

// Call ReadAsync API method

 returnCode = daServerMgt.ReadAsync(transactionHandle, maxAge, ref
temIdentifiers);

 // Check result

 if (returnCode != ReturnCode.SUCCEEDED)

 {

 Console.WriteLine("ReadAsync failed for one or more items");

 // Examine ResultID objects for detailed information.

 }

}

catch (Exception ex)

{

Console.WriteLine("ReadAsync exception. Reason: {0}", ex);

}

Read Method

[Visual Basic]

Read (_

ByVal maxAge As Integer, _

48

www.kepware.com

ClientAce OPC .NET Toolkit Help

ByRef itemIdentifiers() As Kepware.ClientAce.OpcDaClient.ItemIdentifier, _

ByRef itemValues () As Kepware.ClientAce.OpcDaClient.ItemValue _

) As Kepware.ClientAce.OpcDaClient.ReturnCode

[C#]

Kepware.ClientAce.OpcDaClient.ReturnCode Read (

int maxAge,

ref Kepware.ClientAce.OpcDaClient.ItemIdentifier[] itemIdentifiers,

out Kepware.ClientAce.OpcDaClient.ItemValue[] itemValues

);

The Read method is used to read one or more values from the OPC server. It is strongly recommended that a
Subscription be used if the items are read cyclically (and the changed data be received in the DataChanged event).

Parameter Functionality

maxAge Specifies whether or not the server should return a value
from cache or from the device for the specified items. If
the freshness of the items cached value is within the
maxAge, the cache value will be returned. Otherwise, the
server will obtain the data from device. The value of
maxAge must be in milliseconds.

Supported for OPC DA 3.0 servers only.

Note: If maxAge is set to 0, the server will always
obtain the data from device.

itemIdentifiers The array of itemIdentifiers is used to specify the OPC
items that should be read. Possible item-specific errors
will be returned in the ResultID object of the associated
ItemIdentifier.

The API will also set the ServerHandle property. It is
recommended that ItemIdentifier objects be stored if
repeated reads and writes of the same items are
intended. The API will make use of the ServerHandle
values to optimize OPC calls to the server.

itemValues The array itemValues contains Value, Quality and
Timestamp for each item.

Note 1: The return code indicates the overall success of the call. If this code indicates an item-specific error (such as,
ITEMERROR, QUALITYNOTGOOD or ITEMANDQUALITYERROR) each of the ReturnID objects should be examined in
order to determine which items could not be read and why. In the event that the function cannot satisfy the request
(due to invalid arguments or unexpected errors), an exception will be thrown. For more information on Return Value:
ReturnCode, refer to ReturnCode Enumerator.

Note 2: The Read method allows more than one item to be read at a time. Because single multi-item writes can be
executed more efficiently than a series of single-item writes, using multi-item writes is recommended whenever it is
possible.

Note 3: If a particular data type is desired, specify ItemIdentifier.DataType. Because it is a requested type, it may
not be honored. The ResultID of the item will indicate if the server was not able to read the item due to an unsupported
data type.

Example

49

www.kepware.com

ClientAce OPC .NET Toolkit Help

This example reads two items: Channel_1.Device_1.Tag_1 and Channel_1.Device_1.Tag_2.

Visual Basic Example

' Declare variables

Dim maxAge As Integer = 0

Dim itemIdentifiers(1) As Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_1"

itemIdentifiers(1) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier

itemIdentifiers(1).ItemName = "Channel_1.Device_1.Tag_2"

Dim itemValues(1) As Kepware.ClientAce.OpcDaClient.ItemValue

Try

 ' Call Read API method

 daServerMgt.Read(_

 maxAge, _

 itemIdentifiers, _

 itemValues)

 ' Handle results

 Dim item As Integer

 For item = 0 To 1

 If itemIdentifiers(item).ResultID.Succeeded = True Then

 Console.WriteLine(_

 "Value: " & itemValues(item).Value & _

 " Quality: " & itemValues(item).Quality.Name & _

 " Timestamp: " & itemValues(item).TimeStamp)

 Else

 Console.WriteLine("Read failed for item: " & _

 itemIdentifiers(item).ItemName)

 End If

 Next

Catch ex As Exception

 Console.WriteLine("Read exception. Reason: " & ex.Message)

50

www.kepware.com

ClientAce OPC .NET Toolkit Help

End Try

C# Example

// Declare variables

int maxAge = 0;

ItemIdentifier[] itemIdentifiers = new ItemIdentifier[2];

itemIdentifiers[0] = new ItemIdentifier();

itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_1";

itemIdentifiers[1] = new ItemIdentifier();

itemIdentifiers[1].ItemName = "Channel_1.Device_1.Tag_2";

ItemValue[] itemValues = null;

try

{ // Call Read API method

 daServerMgt.Read(maxAge, ref itemIdentifiers, out itemValues);

 // Handle results

 for (int item = 0; item < 2; item++)

 {

 if (itemIdentifiers[item].ResultID.Succeeded)

 {

 Console.WriteLine("Value: {0} Quality: {1} Timestamp {2}",

 itemValues[item].Value,

 itemValues[item].Quality.Name,

 itemValues[item].TimeStamp);
 }

 else

 {

 Console.WriteLine("Read failed for item: {}",

 itemIdentifiers[item].ItemName);

 }

 }

}

51

www.kepware.com

ClientAce OPC .NET Toolkit Help

catch (Exception ex)

{ Console.WriteLine("Read exception. Reason: {0}", ex); }

DataChanged Event

[Visual Basic]

DataChanged (_

ByVal clientSubscription As Integer, _

ByVal allQualitiesGood As Boolean, _

ByVal noErrors As Boolean, _

ByVal itemValues() As Kepware.ClientAce.OpcDaClient.ItemValueCallback _

) Handles daServerMgt.DataChanged

[C#]

Void DataChanged (

int clientSubscription,

bool allQualitiesGood,

bool noErrors,

Kepware.ClientAce.OpcDaClient.ItemValueCallback[] itemValues

);

Note: A DataChanged event will occur when the value or quality of one or more items in a subscription change.
Implement a DataChanged event handler to receive the new item values.

Parameter Functionality

clientSubscription This is the handle given to the subscription when created with the Subscribe method.

allQualitiesGood This flag will be set True if all values included in the data changed notification have good
quality.

noErrors This flag will be set True if there are no item errors, as indicated by the ResultID, in the
values included in the data changed notification. If this flag is False, all ItemValue. ResultID
objects should be examined to determine which items are in error and why.

itemValues This array contains the value, quality, and timestamp that have changed. The ItemValue
elements also contain ResultID objects that are used to indicate possible item-specific
errors.

To add a DataChanged event handler in the Visual Basic application:

1. Declare a DaServerMgt object WithEvents.

2. Dim WithEvents daServerMgt As New Kepware.ClientAce.OpcDaClient.DaServerMgt.

3. Allow the Application Wizard to generate the event handler template by selecting the daServerMgt object and
the DataChanged event.

4. Implement the event handler as desired.

52

www.kepware.com

ClientAce OPC .NET Toolkit Help

Note: For more information, refer to Example Code below.

To add a DataChanged event handler in the C# application:

1. Register the event with DaServerMgt object. daServerMgt.DataChanged += new DAServerMgt.
DataChangedEventHandler(DataChanged).

2. Implement the event handler function as desired.

Note: For more information, refer to the Example Code below.

Examples

[Visual Basic]

Try

 Dim itemValue As Kepware.ClientAce.OpcDaClient.ItemValueCallback

 For Each itemValue In itemValues

 If itemValue.ResultID.Succeeded = True Then

 Console.WriteLine(_

 "Item: " & itemValue.ClientHandle & _

 "Value: " & itemValue.Value & _

 "Quality: " & itemValue.Quality.Name & _

 "Timestamp: " & itemValue.TimeStamp)

 Else

 Console.WriteLine("Item error")

 End If

 Next

Catch ex As Exception

 Console.WriteLine("DataChanged exception. Reason: " & ex.Message)

End Try

[C#]

private void DataChanged (int clientSubscription, bool allQualitiesGood, bool
noErrors, ItemValueCallback[] itemValues)

{

try

 {

 foreach (ItemValueCallback itemValue in itemValues)

53

www.kepware.com

ClientAce OPC .NET Toolkit Help

 {

 if (itemValue.ResultID.Succeeded)

 {

 Console.WriteLine(

"Item: {0}

Value: {1},

Quality: {2},

Timestamp: {3}",

itemValue.ClientHandle,

itemValue.Value,

itemValue.Quality.Name,

itemValue.TimeStamp);

 }

 else

 {

 Console.WriteLine("Item error");

 }

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine("DataChanged exception. Reason: {0}", ex);

 }

}

WriteCompleted Event

[Visual Basic]

WriteCompleted (_

ByVal transaction As Integer, _

ByVal noErrors As Boolean, _

54

www.kepware.com

ClientAce OPC .NET Toolkit Help

ByVal itemResults() As Kepware.ClientAce.OpcDaClient.ItemResultCallback _

) Handles daServerMgt.WriteCompleted

[C#]

void WriteCompleted (

int transactionHandle,

bool noErrors,

Kepware.ClientAce.OpcDaClient.ItemResultCallback[] itemResults

);

Note: A WriteCompleted event will occur when the API has completed an asynchronous write request.

To add a WriteCompleted event handler in the Visual Basic application:

1. Declare a DaServerMgt object WithEvents.

2. Dim WithEvents daServerMgt As New Kepware.ClientAce.OpcDaClient.DaServerMgt.

3. Allow the Application Wizard to generate the event handler template by selecting the daServerMgt object and
the WriteCompleted event.

4. Implement the event handler as desired.

Note: For more information, refer to Example Code below.

To add a WriteCompleted event handler in your C# application:

1. Register the event with DaServerMgt object. daServerMgt.WriteCompleted += new DAServerMgt.
WriteCompletedEventHandler(WriteCompleted).

2. Implement the event handler function as desired.

Note: For more information, refer to Example Code below.

Parameter Functionality

transaction The handle for the read transaction passed to WriteAsync.

noErrors This flag will be set True if there are no item errors, as indicated by the ResultID, in the
items included in the write completed notification. If this flag is False, you should examine
all ItemResultCallback. ResultID objects to determine which items are in error and why.

itemResults This array contains the ClientHandle value and ResultID object for every written item.

Examples

[Visual Basic]

Try

 Dim result As Kepware.ClientAce.OpcDaClient.ItemResultCallback

 For Each result In itemResults

 If result.ResultID.Succeeded = False Then

 Console.WriteLine("Write failed for item: " & _

 result.ClientHandle)

55

www.kepware.com

ClientAce OPC .NET Toolkit Help

 End If

 Next

Catch ex As Exception

 Console.WriteLine("WriteCompleted exception. Reason: " & ex.Message)

End Try

[C#]

private void WriteCompleted (int transactionHandle, bool noErrors,

ItemResultCallback[] itemResults)

{

 try

 {

 foreach (ItemResultCallback result in itemResults)

 {

 if (!result.ResultID.Succeeded)

 {

 Console.WriteLine("Write failed for item: {0}",

 result.ClientHandle);

 }

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine("WriteCompleted exception. Reason: {0}", ex);

 }

}

ReadCompleted Event

[Visual Basic]

ReadCompleted (_

ByVal transactionHandle As Integer, _

56

www.kepware.com

ClientAce OPC .NET Toolkit Help

ByVal allQualitiesGood As Boolean, _

ByVal noErrors As Boolean, _

ByVal itemValues() As Kepware.ClientAce.OpcDaClient.ItemValueCallback _

) Handles daServerMgt.ReadCompleted

[C#]

void ReadCompleted (

int transactionHandle,

bool allQualitiesGood,

bool noErrors,

Kepware.ClientAce.OpcDaClient.ItemValueCallback[] itemValues

);

Note: A ReadCompleted event will occur when the API has completed an asynchronous read request.

To add a ReadCompleted event handler in the Visual Basic application:

1. Declare a DaServerMgt object WithEvents.

2. Dim WithEvents daServerMgt As New Kepware.ClientAce.OpcDaClient.DaServerMgt.

3. Allow the Application Wizard to generate the event handler template by selecting the daServerMgt object and
the ReadCompleted event.

4. Implement the event handler as desired.

Note: For more information, refer to Example Code below.

To add a ReadCompleted event handler in the C# application:

1. Register the event with DaServerMgt object. daServerMgt.ReadCompleted += new DAServerMgt.
ReadCompletedEventHandler(ReadCompleted).

2. Implement the event handler function as desired.

Note: For more information, refer to the Example Code below.

Parameter Functionality

transactionHandle The handle for the read transaction passed to ReadAsync.

allQualitiesGood This flag will be set True if all values included in the read completed notification have good
quality.

noErrors This flag will be set True if there are no item errors, as indicated by the ResultID, in the
values included in the read completed notification. If this flag is False, you should examine
all ItemValue.ResultID objects to determine which items are in error and why.

itemValues This array contains the value, quality, and timestamp of the items specified in the
ReadASync request. The ItemValue elements also contain ResultID objects that are used to
indicate possible item-specific errors.

Example:

[Visual Basic]

Try

57

www.kepware.com

ClientAce OPC .NET Toolkit Help

 Dim itemValue As Kepware.ClientAce.OpcDaClient.ItemValueCallback

 For Each itemValue In itemValues

 If itemValue.ResultID.Succeeded = True Then Console.WriteLine(_

 "Item: " & itemValue.ClientHandle & _

 "Value: " & itemValue.Value & _

 "Quality: " & itemValue.Quality.Name & _

 "Timestamp: " & itemValue.TimeStamp)

 Else

 Console.WriteLine("Item error")

 End If

 Next

Catch ex As Exception

 Console.WriteLine("ReadCompleted exception. Reason: " & ex.Message)

End Try

[C#]

private void ReadCompleted (int transactionHandle, bool allQualitiesGood, bool
noErrors, ItemValueCallback[] itemValues)

{

 try

 {

 foreach (ItemValueCallback itemValue in itemValues)

 {

 if (itemValue.ResultID.Succeeded)

 {

 Console.WriteLine(

"Item: {0}

Value: {1},

Quality: {2},

Timestamp: {3}",

 itemValue.ClientHandle,

58

www.kepware.com

ClientAce OPC .NET Toolkit Help

 itemValue.Value,

 itemValue.Quality.Name,

 itemValue.TimeStamp);

 }

 else

 {

 Console.WriteLine("Item error");

 }

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine("ReadCompleted exception. Reason: {0}", ex);

 }

}

ServerStateChanged Event

[Visual Basic]

ServerStateChanged (_

ByVal clientHandle As Integer, _

ByVal state As Kepware.ClientAce.OpcDaClient.ServerState _

) Handles daServerMgt.ServerStateChanged

[C#]

void ServerStateChanged (

int clientHandle

Kepware.ClientAce.OpcDaClient.ServerState state

);

A ServerStateChanged event will occur when the API has detected that the connection state with a server has changed.
To monitor these changes and take appropriate action in response, implement a ServerStateChanged event handler in
the client application.

To add a ServerStateChanged event handler in the Visual Basic application:

1. Declare a DaServerMgt object WithEvents.

59

www.kepware.com

ClientAce OPC .NET Toolkit Help

2. Dim WithEvents daServerMgt As New Kepware.ClientAce.OpcDaClient.DaServerMgt.

3. Allow the Application Wizard to generate the event handler template by selecting the daServerMgt object and
the ServerStateChanges event.

4. Implement the event handler as desired.

Note: Refer to the example code below for more information.

To add a ServerStateChanged event handler in the C# application:

1. Register the event with DaServerMgt object.daServerMgt.ServerStateChanged+= newDAServerMgt.
ServerStateChangedEventHandler(ServerStateChanged);

2. Implement the event handler function as desired.

Note: For more information, refer to the example code below.

Examples:

Parameter Functionality

clientHandle This is the client handle associated with the particular server connection a state change
notification is for. This handle is provided by the client though the Connect method.

state The current status of the connection.*

*For more information, refer to ServerState Enumeration.

Kepware.ClientAce.OPCCmn Interface of OpcServerEnum Object

The Kepware.ClientAce.OPCCmn namespace does the following:
 Enumerates the OPC servers installed on a given machine.

 Determines the CLSID from an OPC server's ProgID.

See Also:

Creating OpcServerEnum Object

EnumComServer Method

ClsidFromProgID Method

Creating OpcServerEnum Object

Before using the OpcServerEnum Class, an instance of the class must be created.

[Visual Basic]

Dim opcServerEnum As New Kepware.ClientAce.OpcCmn.OpcServerEnum

[C#]

OpcServerEnum opcServerEnum = new

Kepware.ClientAce.OpcCmn.OpcServerEnum ();

EnumComServer Method

[Visual Basic]

EnumComServer (_

60

www.kepware.com

ClientAce OPC .NET Toolkit Help

ByVal nodeName As String, _

ByVal returnAllServers As Boolean, _

ByVal serverCategories() As Kepware.ClientAce.OpcCmn.ServerCategory, _

ByRef servers() As Kepware.ClientAce.OpcCmn.ServerIdentifier _

)

[C#]

void EnumComServer (

string nodeName,

bool returnAllServers,

Kepware.ClientAce.OpcCmn.ServerCategory[] serverCategories,

Kepware.ClientAce.OpcCmn.ServerIdentifier[] servers

);

The EnumComServer method can be used to determine what OPC servers are accessible to a ClientAce application.
These servers can exist on the same computer as the client application, or on any machine accessible on the network.
The results can be filtered according to OPC server category. For more information, refer to ServerState
Enumeration.

Parameter Functionality

nodeName The name or the IP address of the OPC server's host machine. (e.g. localhost, PCTest,
192.168.0.120, etc.). If this parameter is left unassigned, the local host is assumed.

returnAllServers This flag decides whether to return all OPC Servers found on that particular machine or not.
If this parameter is set to true, the array serverCategories will be ignored.

serverCategories This parameter specifies which types of OPC servers should be returned.*

*For more information, refer to ServerState Enumeration.

Examples

This example browses for all OPCDA servers installed on localhost.

[Visual Basic]

' Declare parameters

Dim nodeName As String = "localhost"

Dim returnAllServers As Boolean = False

Dim serverCatagories(0) As Kepware.ClientAce.OpcCmn.ServerCategory

serverCatagories(0) = New Kepware.ClientAce.OpcCmn.ServerCategory

serverCatagories(0) = Kepware.ClientAce.OpcCmn.ServerCategory.OPCDA

Dim servers() As Kepware.ClientAce.OpcCmn.ServerIdentifier

Try

61

www.kepware.com

ClientAce OPC .NET Toolkit Help

 ' Call EnumComServer API method

 opcEnum.EnumComServer(_

 nodeName, _

 returnAllServers, _

 serverCatagories, _

 servers)

 ' Handle results

 Dim server As Kepware.ClientAce.OpcCmn.ServerIdentifier

 For Each server In servers

 Dim progID As String = server.ProgID

 Dim url As String = server.Url

 Console.WriteLine("ProgID: " & progID & " url: " & url)

 Next

Catch ex As Exception

 Console.WriteLine("Handled EnumComServer exception. Reason: " _

 & ex.Message)

End Try

[C#]

// Declare parameters

string nodeName = "localhost";

bool returnAllServers = false;

ServerCategory[] serverCategories = new ServerCategory[1];

serverCategories[0] = new ServerCategory();

serverCategories[0] = ServerCategory.OPCDA;

ServerIdentifier[] servers;

try

{

 // Call EnumComServer API method

 opcEnum.EnumComServer(nodeName, returnAllServers, serverCategories, out
servers);

62

www.kepware.com

ClientAce OPC .NET Toolkit Help

 // Handle results

 foreach (ServerIdentifier server in servers)

 {

 string progID = server.ProgID;

 string url = server.Url;

 Console.WriteLine("ProgID: {0} url: {1}", progID, url);

 }

}

catch (Exception ex)

{

 Console.WriteLine("EnumComServer exception. Reason: {0}", ex);

}

ClsidFromProgID Method

[Visual Basic]

ClsidFromProgId (_

ByVal nodeName As String, _

ByVal progID As String, _

ByRef clsid As String _

)

[C#]

void ClsidFromProgId (

string nodeName,

string progId,

out string clsid

);

The ClsidFromProgID method is used to obtain the CLSID (class ID) of an OPC server from its ProgID (programID). The
server's host machine must be accessible from the client.

Parameter Functionality

nodeName The name or the IP address of the OPC Server's host machine, such as localhost, PCTest,
192.168.0.120, etc. If this parameter is left unassigned, the local host is assumed.

progID The ProgID of the OPC server.

63

www.kepware.com

ClientAce OPC .NET Toolkit Help

clsid The returned CLSID of the OPC server.

[Visual Basic]

' Declare variables

Dim nodeName As String = "localhost"

Dim progId As String = "KEPware.KEPServerEx.V4"

Dim clsid As String

Try

 ' Call ClsidFromProgId API method

 opcEnum.ClsidFromProgId(nodeName, progId, clsid)

 ' Handle result

 Console.WriteLine("CLSID: " & clsid)

Catch ex As Exception

 Console.WriteLine("ClsidFromProgID exception. Reason: " & _

 ex.Message)

End Try

[C#]

// Declare variables

string nodeName = "localhost";

string progId = "KEPware.OPCSampleServer";

string clsid;

try

{

 // Call ClsidFromProgId API method

 opcEnum.ClsidFromProgId(nodeName, progId, out clsid);

 // Handle result

 Console.WriteLine("CLSID: {0}", clsid);

}

64

www.kepware.com

ClientAce OPC .NET Toolkit Help

catch (Exception ex)

{

 Console.WriteLine("ClsidFromProgId exception. Reason: {0}", ex);

}

DA Junction .NET Control

For more information on a specific DA Junction .NET Control topic, select a link from the list below.

Overview of ClientAce DA_Junction

ClientAceDA_Junction

Project Setup

Data Types Description

Overview of ClientAce DA Junction

The ClientAce DA Junction is a customized .NET control that allows a VB.NET or C# programmers to easily link OPC data
to WinForm controls through a simple drag and drop interface. When building advanced custom OPC client applications
that require more control over OPC functionality, ClientAce .NET API is recommended.

Features of the ClientAce DA Junction include:
 No detailed knowledge about OPC Data Access interfaces is required.

 The component completely covers the connection handling procedure for one or multiple OPC servers; such as,

connection establishment, connection monitoring, and reconnection in case of errors.

 Conversion of OPC data from different OPC Data Access interfaces into .NET data types.

 Support for .NET WinForm controls available in Visual Studio and from most 3rd party vendors.

See Also:
ClientAceDA_Junction.htm

DA Junction Configuration Window

A Sample Project Using DA Junction with VB.NET or C#

Licensing ClientAce

ClientAceDA_Junction

Although these properties can only be set at the time of design, they are accessible as Read Only properties at
Runtime.

Public Property Data Type Description

DefaultUpdateRate Integer The default update rate set in the DA_Junction Object. This is the update rate
used on all items unless overridden in the individual item settings.

DisconnectAllServers Method

This method disconnects all servers in the DA Junction Object.

[Visual Basic]

DisconnectAllServers()

[C#]

void DisconnectAllServers();

65

www.kepware.com

ClientAce OPC .NET Toolkit Help

ReconnectAllServers Method

This method reconnects all servers in the DA Junction Object.

[Visual Basic]

ReconnectAllServers()

[C#]

void ReconnectAllServers();

Examples

[Visual Basic]

 Private Sub btnDisconnect_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs _

) Handles btnDisconnect.Click

 Try

 ‘Disconnects all servers that are currently connected in the DA_Junction

 ClientAceDA_Junction1.DisconnectAllServers()

 Catch ex As Exception

 MessageBox.Show("Received Exception: " & ex.Message)

 End Try

 End Sub

 Private Sub btnReconnect_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs _

) Handles btnReconnect.Click

 Try

 ‘Reconnects all servers that are currently connected in the DA_Junction

 ClientAceDA_Junction1.ReconnectAllServers()

 Catch ex As Exception

 MessageBox.Show("Received Exception: " & ex.Message)

 End Try

 End Sub

Project Setup

For more information on DA Junction project setup, select a link from the list below.

66

www.kepware.com

ClientAce OPC .NET Toolkit Help

DA Junction Configuration Window

A Sample Project Using DA Junction with VB.NET or C#

Item Update Rate

Disable Datachange while Control Has Focus

DA Junction Configuration Window

The DA Junction Configuration Window is divided into three main parts:
 The OPC Items pane

 The Controls pane

 The Connections pane (which includes the General and Trigger Connection Settings).

OPC Items Pane

The OPC Items pane displays items from an OPC server project.
1. Click the green browse icon.

2. Use the Add Server dialog to browse to the particular OPC server.

3. Click on the OPC server, then select OK. In the example, KEPware.OPCSampleServer is selected.

67

www.kepware.com

ClientAce OPC .NET Toolkit Help

4. Use the drop-down box to choose the information displayed about the OPC server's tags; such as showing the
item names (or tag names) only, showing the items' access rights and data type, and etc.

Controls Pane

The Controls pane is in the upper right area of the screen. The example shown below demonstrates the 6 controls on
Form1. Use the drop-down menu to choose from the control properties being displayed.

In the example shown below, Show all properties is selected.

68

www.kepware.com

ClientAce OPC .NET Toolkit Help

In the example shown below, the Apply property filter, which shows the Filter dialog, is displayed. The Type Filter,
which includes a checklist of available data types, is found in the first tab.

In the example shown below, the Access Filter tab in the Filter dialog is displayed. The Show Read Only Properties
field is unchecked by default because data is usually written from the OPC server to the property of the user interface
control. To write data from the property, Show Read Only Properties must be check from the OPC server.

69

www.kepware.com

ClientAce OPC .NET Toolkit Help

In the example shown below, the Property Level tab in the Filter dialog is displayed. The default level is 2. The higher
the number is, the greater the level of property detail that will be shown. If the end node of a given item is at level 2,
then only 2 levels will be shown for that item if the property level filter is set to 2 or higher. Likewise, if the level filter is
set to 3 then only 3 levels of property detail will be shown even if a given item's end node is at level 4 or higher.

Connections Pane

The Connections pane is in the lower half of the screen. The Connections grid can be used to modify the tag state,
server name, tag item, and data direction. It can also be used to modify or set Visual Studio controls and properties,
and also to set triggers.

70

www.kepware.com

ClientAce OPC .NET Toolkit Help

Direction Property

Direction is an important property when setting up the tag-control connections. The Direction property determines
whether the Visual Studio control is Read Only, Write Only or Read/Write. The default is shown in bold.

Direction Property Description

Item =>Control Read Only Direction of data is from Item to Control only.

Item <= Control Write Only Direction of data is from Control to Item only.

Item <=> Control Read/Write Data flows in both directions.

Connection Settings

To access the Connection Settings for an item:
1. Click on the Settings column.
2. Click on the ellipses button.

Note: The Connection Settings window has two tabs: General and Trigger. The General tab is shown below.

See Also: Item Update Rate and Disable Datachange while Control Has Focus.

The Trigger tab can be used to select the control, browse events and select an event that will trigger a write to the
OPC tag connected to the control. For a description of the Trigger tab using a sample project, see the Triggers section
of the Sample Project topic.

71

www.kepware.com

ClientAce OPC .NET Toolkit Help

A Sample Project Using DA Junction with VB.NET or C#

Microsoft Visual Studio supports many different 3rd party .NET controls that can be connected to OPC tag items through
the Kepware. ClientAce.DA_Junction control library. The following example demonstrates how to connect VB/C#
TextBox controls to OPC tag items and then read and write to the items through the VB/C# TextBox controls.

Important: All referenced controls must be on the local drive. Assemblies that are located on a network drive should
not be referenced, as this will cause the Visual Studio error "Unable to cast object of type <type> to <type>." This is a
limitation of the Microsoft .NET development environment.

Step 1

Verify that the Visual Basic Toolbox includes the ClientAceDA_Junction Control.

1. In the Visual Basic Toolbox, check the controls listed under the ClientAce tab.

2. If the ClientAceDA_Junction control is missing, add it by following the procedure described in Missing Controls.

Step 2

Add VB/C# Controls to a Windows Form.

1. Begin with a blank Form. Next, drag and drop the ClientAceDA_Junction control from the Toolbox to the new
Form. The control label ClientAceDA_Junction1 will be displayed in the lower-left corner of the screen.

72

www.kepware.com

ClientAce OPC .NET Toolkit Help

2. Drag and drop three VB/C# Label controls and three TextBox controls onto the form. The Label and TextBox
controls are located under the Windows Forms tab in the Toolbox.

3. For this example, the name and text properties of the controls have been changed to a more descriptive name. To
open Properties, click View and then select Properties Window. Use ALT+ENTER as a shortcut.

4. Click once on the Label1 Control to make sure it is selected.

73

www.kepware.com

ClientAce OPC .NET Toolkit Help

5. In the Properties window, click Design and then change the Name property of the Label1 control to "lblRead" (as
shown below).

6. Under Appearance, change the Text property to "ReadVal" as shown below.

7. Repeat this procedure to change the Name and Text properties of the other five controls. These controls are shown
displayed in the following table.

74

www.kepware.com

ClientAce OPC .NET Toolkit Help

Original Default Name of
Control

New (Name) Property New Text Property

Label1 lblRead ReadVal

Label2 lblWriteValue WriteVal

Lable3 lblReadWriteValue ReadWriteVal

TextBox1 txtRead *

TextBox2 txtWrite *

TextBox3 txtReadWrite *

Note: The Text property for the TextBox controls should be left blank. The new Text properties will be updated
automatically by the OPC tag items.

Step 3

Invoke the ClientAce DA Junction configuration.

1. Click on the ClientAceDA_Junction1 control to select the ClientAceDA_Junction1 property.

2. In the Properties window, click once on the ClientAceConfiguration property.

3. Click on the ellipses button to launch the ClientAce DA Junction Configuration window.

4. Use the OPC Items pane (on the left side of the window) to add local and remote servers and also to browse for
OPC tag items. Use the Control pane (on the right side of the window) to see the VB/C# controls displayed. See
Also: DA Junction Configuration Window.

75

www.kepware.com

ClientAce OPC .NET Toolkit Help

Step 4

Connect to OPC servers and add tags.

1. Double-click on Click to add a server link in the left pane of the window.

2. Select the server to connect to, either on the local computer or OPC servers on remote machines (using the nodes
Local Machine, Remote Machine or Custom Remote Machines). In the example, the "KEPware.OPCSampleServer"
OPC server is connected.

3. Browse the OPC server to reach the tags to which the Visual Studio controls can connect.

76

www.kepware.com

ClientAce OPC .NET Toolkit Help

4. Drag and drop each OPC tag item onto the Visual Studio control. For example: Drag the BYTEK0 tag to the
txtRead and txtWrite controls, and BYTEK1 to the txtReadWrite textbox control. Afterwards, the tag items will be listed
in the Connections grid (at the bottom of the screen).

Step 5

Modify the Connections.

Connections Grid
Use the Connections grid located at the bottom of the Configuration Window to modify the tag state, server name, tag
item, data direction, Visual Studio controls, properties and to set triggers. See Also: DA Junction Configuration
Window.

77

www.kepware.com

ClientAce OPC .NET Toolkit Help

Direction Property
Direction is an important property when setting up the tag-control connections. The Direction property determines
whether the Visual Studio control is Read Only, Write Only or Read/Write. The default is shown in bold.

Direction Property Description

Item => Read Only Direction of data is from Item to Control only.

Item <= Control Write Only Direction of data is from Control to Item only.

Item <=> Control Read/Write Data flows in both directions.

In the example, the txtRead control should be Read Only (default), the txtReadWrite control should be Read/Write, and
the txtWrite control should be Write Only.

Perform the following steps:

1. Click the Direction column for the txtReadWrite control, and select Item <=> Control from the drop-down menu.

2. Click the Direction column for the txtWrite control, and select Item <= Control from the drop-down menu.

Note: When the direction is changed to Write Only (<=) or Read/Write (<=>), the item will display a red "X" in the
left-most column, as shown in the screen below. The red X signifies an error. This is because the control has been set
to Write Only or Read/Write but the control does not yet have its write conditions specified. A property called Triggers
can specify the conditions for the write procedures.

Triggers

To access the Triggers property for an item:

1. Click on the Settings column.

2. Click the ellipses button.

3. Under the Connection Settings window, click the Trigger tab.

78

www.kepware.com

ClientAce OPC .NET Toolkit Help

Note: The Trigger tab is used to select the control, browse events and select an event that will trigger a write to the
OPC tag connected to the control. For example: The txtReadWrite and TxtWrite controls need to have their write
conditions specified as follows:

 The txtReadWrite control's LostFocus event will be the event to trigger writes on the txtReadWrite Visual Studio

control.

 The txtWrite control's LostFocus event will be the event to trigger writes on the txtWrite Visual Studio control.

Write Conditions

Note: Perform the following steps for txtReadWrite and txtWrite.

1. Select and expand the txtReadWrite control in the left pane of the window to see all of its properties.

2. Choose LostFocus from the Event drop-down list (or drag the LostFocus property and drop it in the Event column).

79

www.kepware.com

ClientAce OPC .NET Toolkit Help

3. Click OK.

4. The Configuration Screen is displayed once the Connection Settings/Triggers window closes. Repeat the process
for the txtWrite control.

5. In the Connections pane, click the ellipses button in the Settings column.

80

www.kepware.com

ClientAce OPC .NET Toolkit Help

6. On the Trigger tab, select LostFocus as the Event for txtWrite.

7. Click OK.

Condition Field Note: When applicable, the Condition field will provide a drop-down list of conditions. For example:
If a control is added with KeyDown in the Event field, the Condition drop down would display a list of valid keys to
choose from.

8. To finish, click OK at the bottom of the Configuration screen to save the changes made. Then, build the application
and run it: it will read from and write to the OPC tags through the associated VB or C# controls.

Item Update Rate

There are two update rate settings available in ClientAce: the Global Update Rate and the Item Level Update Rate.

Default Global Update Rate for All Items

The Global Update Rate defines the default update rate for items initially added. Although the default global update rate
for all items is 1000 milliseconds, it can be modified by changing the DefaultUpdateRate property of the DA_Junction
control. An example is shown below.

81

www.kepware.com

ClientAce OPC .NET Toolkit Help

To Change the Update Rate for an Individual DA Junction Item

The update rate for an individual DA Junction item can also be changed. This change does not affect the default update
rate for other controls.

1. Launch the Configuration window by clicking on the ClientAceConfiguration ellipses button.

2. Click in the Settings column and select the ellipses next to the item whose default rate you want to change.

82

www.kepware.com

ClientAce OPC .NET Toolkit Help

3. In the Connection Settings window, select the General tab.

4. Modify the value in the Update Rate field (in milliseconds).

5. Click OK.

Disable DataChange while Control Has Focus

Disable datachange while control has focus is used to change a value in the control without it being overwritten by
a change from the OPC Server. Follow the instructions below.

1. Launch the Configuration window by clicking on the ClientAceConfiguration ellipses button.

83

www.kepware.com

ClientAce OPC .NET Toolkit Help

2. In the Settings column, choose the ellipses next to the item whose properties are to be changed.

3. In the Connection Settings window, select the General tab.

4. Click the checkbox for Disable datachange while control has focus.

84

www.kepware.com

ClientAce OPC .NET Toolkit Help

5. Click OK at the bottom of the Connection Settings window.

Note: The selected control is now set for the Data Update Pause when it has focus.

Data Types Description

Data Type Description

Boolean Single bit.

Word Unsigned 16 bit value

bit 0 is the low bit.
bit 15 is the high bit.

Short Signed 16 bit value

bit 0 is the low bit.
bit 14 is the high bit.
bit 15 is the sign bit.

DWord Unsigned 32 bit value

bit 0 is the low bit.
bit 31 is the high bit.

Long Signed 32 bit value

bit 0 is the low bit.
bit 30 is the high bit.
bit 31 is the sign bit.

Float 32 bit floating point value

bit 0 is the low bit.
bit 31 is the high bit .

Double 64 bit floating point value

bit 0 is the low bit.
bit 63 is the high bit .

String Typically null terminated, null padded or blank padded ASCII
string.

Additional ClientAce .NET Controls

For more information on a specific ClientAce .NET Control, select a link from the list below.

ClientAce ServerBrowser

ClientAceItemBrowser

ServerBrowser Control

ItemBrowser Control

ServerState Control

85

www.kepware.com

ClientAce OPC .NET Toolkit Help

ChannelSettings Control

Kepware.ClientAce.KEPServerEXControls

ClientAceServerBrowser

This server browser component allows users to add the ability to search for OPC Servers on the local computer and in
the network. The properties are used to set the appearance and action of the browser at Runtime. Although they can
only be set at the time of design, they are accessible as Read Only properties at Runtime.

ClientAceServerBrowser Property

Public Property Data Type Description

BrowseStatus Boolean This property is used to determine whether the Validate menu entry
should be shown when a server in the browser is right-clicked.

CustomRemoteMachineCount Integer This property is used to determine how many Customer Remote
Machine nodes will be displayed in the browser when they are
added.

ExpandLocalMachine Boolean This property is used to determine whether the localhost node
should be expanded when the browser is initialized at Runtime.

ShowCustomRemoteMachine Boolean This property is used to determine whether the custom remote
machine node should be shown when the browser is initialized at
Runtime.

ShowLocalMachine Boolean This property is used to determine whether the localhost node
should be shown when the browser is initialized at Runtime.

ShowRemoteMachine Boolean This property is used to determine whether the Remote Machine
network node should be shown when the browser is initialized at
Runtime.

GetSelectedServer Method

The GetSelectedServer Method can be used to return the currently selected server's OPCUrl object or individual parts. It
is used in conjunction with the Server Browser Objects SelectionChanged and ServerDoubleclicked Events (described
below). For more information on the URL Object, refer to OPCUrl Class.

[Visual Basic]

GetSelectedServer() As Kepware.ClientAce.BrowseControls.OpcUrl

[C#]

As Kepware.ClientAce.BrowseControls.OpcUrl GetSelectedServer();

SelectionChanged Event

This event indicates that the selection of the OPC server in the Browse Tree has changed.

[Visual Basic]

SelectionChanged(ByVal serverIsSelected As Boolean) Handles ClientAce

[C#]

void SelectionChanged(

 bool serverIsSelected

);

ServerDoubleClicked Event

This event indicates that an OPC server in the tree was double-clicked.

86

www.kepware.com

ClientAce OPC .NET Toolkit Help

[Visual Basic]

ServerDoubleClicked() Handles ClientAceServerBrowser1.ServerDoubleClicked

[C#]

void ServerDoubleClicked();

Examples

[Visual Basic]

 Private Sub CLIENTACESERVERBROWSER1_SelectionChanged(ByVal serverIsSelected As
Boolean) _

 Handles CLIENTACESERVERBROWSER1.SelectionChanged

 Dim mURL as String

 Dim mProgID as String

 Dim mOPCType as String

 Dim mCLSID as String

 Dim mHostName as String

 Try

 mURL = CLIENTACESERVERBROWSER1.GetSelectedServer.Url

 mProgID = CLIENTACESERVERBROWSER1.GetSelectedServer.ProgID

 mOPCType = CLIENTACESERVERBROWSER1.GetSelectedServer.Type.ToString

 mCLSID = CLIENTACESERVERBROWSER1.GetSelectedServer.ClsID

 mHostName = CLIENTACESERVERBROWSER1.GetSelectedServer.HostName

 mIsValid = CLIENTACESERVERBROWSER1.GetSelectedServer.IsValid

 Catch ex As Exception

 MessageBox.Show("Exception: " & ex.Message)

 End Try

 End Sub

 Private Sub CLIENTACESERVERBROWSER1_ServerDoubleClicked() _

 Handles CLIENTACESERVERBROWSER1.ServerDoubleClicked

 Dim mURL as String

87

www.kepware.com

ClientAce OPC .NET Toolkit Help

 Dim mProgID as String

 Dim mOPCType as String

 Dim mCLSID as String

 Dim mHostName as String

 Dim mIsValid as String

 Try

 mURL = CLIENTACESERVERBROWSER1.GetSelectedServer.Url

 mProgID = CLIENTACESERVERBROWSER1.GetSelectedServer.ProgID

 mOPCType = CLIENTACESERVERBROWSER1.GetSelectedServer.Type.ToString

 mCLSID = CLIENTACESERVERBROWSER1.GetSelectedServer.ClsID

 mHostName = CLIENTACESERVERBROWSER1.GetSelectedServer.HostName

 mIsValid = CLIENTACESERVERBROWSER1.GetSelectedServer.IsValid

 Catch ex As Exception

 MessageBox.Show("Exception: " & ex.Message)

 End Try

 End Sub

ClientAceItemBrowser

This item browser component allows users to navigate the address space of an OPC Data Access server and also display
OPC Data Access items. Although these properties can only be set at the time of design, they are accessible as Read
Only properties at Runtime.

ClientAceItemBrowser Properties

Public Property Data Type Description

Servers OPCUrl Object Indicates the Servers currently being used.

ShowAddServerMenuItem Boolean Indicates if the Add Server menu items should be shown in the server
browser pane when right-clicked.

ShowInternalServerBrows
er

Boolean Indicates if the Internal Server Browser should be shown at Runtime.

ShowItemList Boolean Indicates if the Item List should be shown at Runtime.

ShowItemNameAndPath Boolean Indicates if the Item Name and Path should be shown in the Item List
at Runtime.

ShowItemsInTree Boolean Indicates if the Items should be shown in the Browser Tree List at
Runtime.

ShowPropertiesInBrackets Boolean Indicates if the Item Properties should be shown in brackets beside
the Item in the Browser Tree List at Runtime.

ShowPropertiesInTree Boolean Indicates if the Item Properties should be shown in the Browser Tree
List at Runtime.

ShowPropertyList Boolean Indicates if the Property List should be shown at Runtime.

88

www.kepware.com

ClientAce OPC .NET Toolkit Help

SwitchTabPages Boolean Indicates if the pages should switch automatically from the Item List
to the Properties List when an item is selected in the Tree View List at
Runtime.

AddServer Method

This method adds an OPC server to the Tree View of the ClientAce Item Browser.

[Visual Basic]

AddServer(ByVal URL as String)

[C#]

void AddServer(

 string URL

);

Parameter Functionalities

URL The URL of the OPC servers.

Note: The syntax of the URL (which uniquely identifies a server) must follow this format:

[OpcSpecification]://[Hostname]/[ServerIdentifier]

OpcSpecification: Selects the OPC Specification to be used.
 opcda for OPC Data Access 2.05A respectively 3.0 (COM)Hostname: Name or IP address of

the machine that hosts the OPC server. For the local machine, localhost must be used.
ServerIdentifier: Identifies the OPC server on the specified host.

 OPC COM DA – [ProgID]/[optional ClassID]

Note: For OPC DA servers, the API will attempt to connect using the ClassID first. If the ClassID
is not given or is found to be invalid, the API will attempt to connect using the ProgID.

Examples:

opcda://localhost/OPCSample.OpcDaServer/{625c49a1-be1c-45d7-9a8a-14bedcf5ce6c}

opcda://PC_001/ KEPware.KEPServerEx.V4/{6e6170f0-ff2d-11d2-8087-00105aa8f840}

opcda://PC_001/ KEPware.KEPServerEx.V4

opcda://PC_001//{6e6170f0-ff2d-11d2-8087-00105aa8f840}

Connect Method

This method initiates a connect to the specified server in the ClientAce Browser.

[Visual Basic]

Connect(ByVal URL as String)

[C#]

void Connect(

 string URL

);

89

www.kepware.com

ClientAce OPC .NET Toolkit Help

Parameter Functionalities

URL The URL of the OPC servers.

Note: The syntax of the URL (which uniquely identifies a server) must follow this format:

[OpcSpecification]://[Hostname]/[ServerIdentifier]

OpcSpecification: Selects the OPC Specification to be used.
 opcda for OPC Data Access 2.05A respectively 3.0 (COM)Hostname: Name or IP address of

the machine that hosts the OPC server. For the local machine, localhost must be used.
ServerIdentifier: Identifies the OPC server on the specified host.

 OPC COM DA – [ProgID]/[optional ClassID]

Note: For OPC DA servers, the API will attempt to connect using the ClassID first. If the
ClassID is not given or is found to be invalid, the API will attempt to connect using the
ProgID.

Examples:

opcda://localhost/OPCSample.OpcDaServer/{625c49a1-be1c-45d7-9a8a-14bedcf5ce6c}

opcda://PC_001/ KEPware.KEPServerEx.V4/{6e6170f0-ff2d-11d2-8087-00105aa8f840}

opcda://PC_001/ KEPware.KEPServerEx.V4

opcda://PC_001//{6e6170f0-ff2d-11d2-8087-00105aa8f840}

ConnectAll Method

This method initiates a connection to all the servers currently added in the Item Browser.

[Visual Basic]

ConnectAll()

[C#]

void ConnectAll();

Disconnect Method

This method initiates a disconnect to the specified server in the ClientAce Browser.

[Visual Basic]

Disconnect(ByVal Server as String)

[C#]

void Disconnect (

 string Server

);

Parameter Functionalities

Server The Server URL of the OPC servers.

Note: The syntax of the URL (which uniquely identifies a server) must follow this format:

[OpcSpecification]://[Hostname]/[ServerIdentifier]

OpcSpecification: Selects the OPC Specification to be used.

90

www.kepware.com

ClientAce OPC .NET Toolkit Help

 opcda for OPC Data Access 2.05A respectively 3.0 (COM)Hostname: Name or IP address of

the machine that hosts the OPC server. For the local machine, localhost must be used.
ServerIdentifier: Identifies the OPC server on the specified host.

 OPC COM DA – [ProgID]/[optional ClassID]

Note: For OPC DA servers, the API will attempt to connect using the ClassID first. If the ClassID
is not given or is found to be invalid, the API will attempt to connect using the ProgID.

Examples:

opcda://localhost/OPCSample.OpcDaServer/{625c49a1-be1c-45d7-9a8a-14bedcf5ce6c}

opcda://PC_001/ KEPware.KEPServerEx.V4/{6e6170f0-ff2d-11d2-8087-00105aa8f840}

opcda://PC_001/ KEPware.KEPServerEx.V4

opcda://PC_001//{6e6170f0-ff2d-11d2-8087-00105aa8f840}

DisconnectAll Method

This method disconnects all servers currently connected in the Item Browser.

[Visual Basic]

DisconnectAll()

[C#]

void DisconnectAll();

DisconnectSelectedServer Method

This method disconnects the server currently being used.

Note: Servernode or childnode must be selected.

[Visual Basic]

DisconnectSelectedServer()

[C#]

void DisconnectSelectedServer();

GetSelectedItems Method

This method returns the selected items as an array of Browse Controls OPC DA items. If no item is selected, the length
of the array will be 0.

[Visual Basic]

GetSelectedItems() as Kepware.ClientAce.BrowseControls.OpcDaItem

[C#]

As Kepware.ClientAce.BrowseControls.OpcDaItem GetSelectedItem ();

ItemDoubleClicked Event

This event shows that an OPC item in the browser was double-clicked.

[Visual Basic]

ItemDoubleClicked(_

91

www.kepware.com

ClientAce OPC .NET Toolkit Help

 ByVal Sender as Object, _

 ByVal item as Kepware.ClientAce.BrowseControls.OpcDaItem)

) Handles ClientAceItemBrowser1.ItemDoubleClicked

[C#]

void ItemDoubleClicked (

 Kepware.ClientAce.BrowseControls.ClientAceItemBrowser sender,

 Kepware.ClientAce.BrowseControls.OpcDaItem item

);

ItemSelected Event

This event shows that one or more OPC items are selected in the item browser.

[Visual Basic]

ItemSelected(ByVal sender as Object, ByVal ItemCount as Integer _

) Handles ClientAceItemBrowser1.ItemSelected

[C#]

void ItemSelected (

 Kepware.ClientAce.BrowseControls.ClientAceItemBrowser sender,

 Int itemCount

);

Examples

[Visual Basic]

Private Sub Form3_Load(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs _

) Handles MyBase.Load

 Try

 ‘Display the current configuration of the

 CheckBox1.Checked = ClientAceItemBrowser1.ShowAddServerMenuItem

 CheckBox2.Checked = ClientAceItemBrowser1.ShowInternalServerBrowser

 CheckBox3.Checked = ClientAceItemBrowser1.ShowItemList

 CheckBox4.Checked = ClientAceItemBrowser1.ShowItemNameAndPath

92

www.kepware.com

ClientAce OPC .NET Toolkit Help

 CheckBox5.Checked = ClientAceItemBrowser1.ShowItemsInTree

 CheckBox6.Checked = ClientAceItemBrowser1.ShowPropertiesInBrackets

 CheckBox7.Checked = ClientAceItemBrowser1.ShowPropertiesInTree

 CheckBox8.Checked = ClientAceItemBrowser1.ShowPropertyList

 CheckBox9.Checked = ClientAceItemBrowser1.SwitchTabpages

 'Server to be used in the control

 ClientAceItemBrowser1.AddServer(_

 "opcda://localhost/KEPware.OPCSampleServer/{6E617113-FF2D-11D2-8087-
00105AA8F840}")

 ClientAceItemBrowser1.Connect(_

 "opcda://localhost/KEPware.OPCSampleServer/{6E617113-FF2D-11D2-8087-
00105AA8F840}")

 Catch ex As Exception

 MessageBox.Show("Received Exception: " & ex.Message)

 End Try

 End Sub

 Private Sub ClientAceItemBrowser1_ItemDoubleClicked(_

 ByVal sender As Object, _

 ByVal item As Kepware.ClientAce.BrowseControls.OpcDaItem _

) Handles ClientAceItemBrowser1.ItemDoubleClicked

 Try

 ‘Add the item to the projects subscribed items.

 mAdditems(item)

 Catch ex As Exception

 MessageBox.Show("Received Exception: " & ex.Message)

 End Try

 End Sub

93

www.kepware.com

ClientAce OPC .NET Toolkit Help

 Private Sub ClientAceItemBrowser1_ItemsSelected(_

 ByVal sender As Object, _

 ByVal itemCount As Integer _

) Handles ClientAceItemBrowser1.ItemsSelected

 Try

 ‘If more than one item is selected then add them to the projects subscribed
items

 If itemCount > 1 Then

 mItems = ClientAceItemBrowser1.GetSelectedItems()

 mAdditems(item)

 End If

 Catch ex As Exception

 MessageBox.Show("Received Exception: " & ex.Message)

 End Try

 End Sub

 Private Sub btnConnect_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs _

) Handles btnConnect.Click

 Try

 ClientAceItemBrowser1.Connect(_

 "opcda://localhost/KEPware.OPCSampleServer/{6E617113-FF2D-11D2-8087-
00105AA8F840}")

 Catch ex As Exception

 MessageBox.Show("Received Exception: " & ex.Message)

 End Try

 End Sub

 Private Sub btnDisconnect_Click(_

94

www.kepware.com

ClientAce OPC .NET Toolkit Help

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs _

) Handles btnDisconnect.Click

 Try

 ClientAceItemBrowser1.Disconnect(_

 "opcda://localhost/KEPware.OPCSampleServer/{6E617113-FF2D-11D2-8087-
00105AA8F840}")

 Catch ex As Exception

 MessageBox.Show("Received Exception: " & ex.Message)

 End Try

 End Sub

 Private Sub btnConnectAll_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs _

) Handles btnConnectAll.Click

 Try

 ClientAceItemBrowser1.ConnectAll()

 Catch ex As Exception

 MessageBox.Show("Received Exception: " & ex.Message)

 End Try

 End Sub

 Private Sub btnDisconnectAll_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs _

) Handles btnDisconnectAll.Click

 Try

 ClientAceItemBrowser1.DisconnectAll()

 Catch ex As Exception

95

www.kepware.com

ClientAce OPC .NET Toolkit Help

 MessageBox.Show("Received Exception: " & ex.Message)

 End Try

 End Sub

OpcDaItem Class

This class describes the management object for an OPC Item selected in the OPC Item Browser.

Public Properties Data Type Description

AccessRights Object (BrowseControls.
AccessRights)

The access rights of the OPC DA item.

DataType System.Type The description of the property. This information can be used
when displaying the property in a graphical user interface
(such as in a Grid Control or a ToolTip).

ItemName String If the OPC Server supports reading and writing of properties
through an item, the item name of this property will be
returned.

ItemPath String If the OPC Server supports reading and writing of properties
through an item, the item path of this property will be
returned.

Name String The display name of the OPC DA item.

ServerURL String The corresponding server URL.

OPCUrl Class

This class describes the management object for the URL for an OPC Server selected in the OPC Server Browser.

Public Properties Data Type Description

ClsID String
(BrowseControls.OPCType)

The registered Class ID of the selected OPC Server.

HostName String The name of the host machine where the selected OPC
Server is located. For a local server connection, this is
called the "localhost."

IsValid Boolean Reports whether or not the selected server is a valid OPC
Server.

ProgID String The Program ID for the selected COM OPC Server.

Type Object* The OPC Specification Type (such as DA) for an OPC DA
Server.*

URL() String The complete OPC server's URL takes the following form:

[OPC Specification, e.g. opcda]://[Hostname, e.g.
localhost]/[ProgID]/[ClsID] for the selected server.

*For more information, refer to OPCType Enumerated Values.

AccessRights Enumerated Values

The values shown below are the enumeration for the OPC DA item access rights.

Value Constant Name Description

0 NOTDEFINED No rights are defined.*

1 READONLY The item is Read Only.

2 READWRITE The item can be Read and Written.

96

www.kepware.com

ClientAce OPC .NET Toolkit Help

3 WRITEONLY The item is Write Only.

*This is the default state.

NodeType Enumerated Values

The values shown below are the enumeration of node types.

Value Constant Name Description

0 Server OPC Server or Root of the Server Browse Space.

1 Branch Branch in the address space of the OPC Server.

2 Hint Hint that indicates how the ItemID of a Item is built.

3 Item Item in the address space of the OPC Server.

OPCType Enumerated Values

The values shown below are the enumeration for the OPC specification types.

Value Constant Name Description

0 NOTDEFINED No type defined.*

1 XMLDA OPC XML Data Access.

2 DA OPC Data Access.

3 AE OPC Alarm and Events.

4 DX OPC Data Exchange.

5 HDA OPC Historical Data Access.

6 UA OPC Unified Architecture.

*This is the default state.

ServerBrowser Control

The ServerBrowser control provides the functionality to browse OPC Data Access servers on local and remote machines.

Adding the Control to the Visual Studio Project

Important: All referenced controls must be on the local drive. Assemblies that are located on a network drive should
not be referenced, as this will cause the Visual Studio error "Unable to cast object of type <type> to <type>." This is a
limitation of the Microsoft .NET development environment.

1. Open a new or existing project in Visual Studio.

2. Verify that all of the ClientAce controls have been added to the Visual Studio Environment. In Visual Studio,
the Toolbox should include the controls shown below. For information on adding controls to the Toolbox, refer
to Missing Controls.

3. To add a control, drag it from the Toolbox and drop it onto a form.

97

www.kepware.com

ClientAce OPC .NET Toolkit Help

The ServerBrowser Control at Runtime

At Runtime, the ServerBrowser control looks like this:

Local Machine

Click on the + to expand the Local Machine and display the servers. Click on a server to highlight it. For more
information on using ClientAce API to connect to the server, refer to Overview of ClientAce .NET API.

Remote Machine

Click on the + to expand the Remote Machine and display the servers. Click on a server to highlight it. For more
information on using ClientAce API to connect to the server, refer to Overview of ClientAce .NET API.

Note: The DCOM settings on the remote machine must be configured properly in order to access the servers on that
machine.

Custom Remote Machines

Use Custom Remote Machines to custom define links to remote machines using either the IP address or machine name

98

www.kepware.com

ClientAce OPC .NET Toolkit Help

of the PC that will be browsed. To define a custom link to a remote machine, perform the following steps:
1. Click on the + next to Custom Remote Machines.

2. Click on <Add Node> and then press F2.

3. Type the IP address or machine name of the remote PC that will be browsed, and press ENTER.

4. A link pointing to the remote machine has been created. Click on the + next to the remote machine IP address
or name to display the servers on the remote machine.

5. Click on a server to highlight it. To use the ClientAce API to connect to the server, refer to Overview of
ClientAce .NET API for more information.

6. In this example, the remote machine 10.10.30.26 has been defined as a custom link.

Note: Once a Custom Remote Machine is created, the link is saved by the application. The next time the application is
opened, the Custom Remote Machine will be available and accessible. Please note, however, that the Custom Remote
Machine is associated only with the application that it was created for originally. For example: If a new application is
created, the Custom Remote Machines created for other applications/projects will not be available for browsing. This
means that a new Custom Remote Machine link would need to be created for the new application/project.

ItemBrowser Control

The ItemBrowser control provides the functionality to browse tags in an OPC Data Access server on local or remote
machines.

Adding the Control to the Visual Studio Project

All referenced controls must be on the local drive. Assemblies that are located on a network drive should not be
referenced, because it will cause the Visual Studio error "Unable to cast object of type <type> to <type>." This is a
limitation of the Microsoft .NET development environment.

1. Open a new or existing project in Visual Studio.

2. Verify that all of the ClientAce controls have been added to the Visual Studio Environment. To add controls to the
toolbox, refer to Adding Controls to the Visual Studio Environment.

99

www.kepware.com

ClientAce OPC .NET Toolkit Help

3. To add a control, drag it from the Toolbox and drop it onto a form.

The ItemBrowser Control at Runtime

At Runtime, the ItemBrowser control looks like the following:
1. The blank left pane indicates that no servers have been added. To add a server, right-click in the left pane and

select Add Server from the context menu.

2. Next, add an OPC server using either the Server Browser or OPC DA tabs. To add a server using the Server
Browser tab, see ServerBrowser Control. To add a server using the OPC DA tab, perform the following
steps.

100

www.kepware.com

ClientAce OPC .NET Toolkit Help

Note: When designing an application, it is best to synchronize the ItemBrowser control with the
ServerBrowser control. You would not want to connect to a particular server using the ServerBrowser before
adding tags of a different server using the ItemBrowser. For more information, refer to ServerBrowser Control
.

3. Click the OPC DA tab and fill in the required details of the OPC server that will be connected to.
Hostname: Enter any of the following: IP address, machine name, or localhost.
ProgID: Enter the exact ProgID of the server.

4. When finished, click OK. The chosen server can be found in the left pane of the ItemBrowser window. In the
example shown below, server 10.10.30.26 has been added.

5. To expand the added server, click on the + next to the server name or IP address.

6. Select the channel by clicking on the + next to it.

7. Click on the tag group. The tags for that group will be displayed in the Itemlist tab in the right pane. The
screenshot below shows the Device_1 group selected from Channel_1 in the 10.10.30.26 server. The four tags
for the Device_1 group are shown in the Itemlist tab in the right pane.

101

www.kepware.com

ClientAce OPC .NET Toolkit Help

Note: The tags that are browsable in the ItemBrowser control can be selected and monitored by the programming
code. To view the properties of a tag, select the tag and then click the Properties tab.

ServerState Control

The ServerState control provides the functionality to view the properties of the project of an OPC server provided by
Kepware Technologies.

Note: If there are multiple KEPServerEX OPC servers installed on the local machine, the ServerState control retrieves
the project properties of the server that was installed most recently.

Adding the Control to the Visual Studio Project

Important: All referenced controls must be on the local drive. Assemblies that are located on a network drive should
not be referenced, as this will cause the Visual Studio error "Unable to cast object of type <type> to <type>." This is a
limitation of the Microsoft .NET development environment.

1. Open a new or existing project in Visual Studio.

2. Verify that all of the ClientAce controls have been added to the Visual Studio Environment. In Visual Studio,
the Toolbox should include the controls shown below. To add controls to the Toolbox, refer to Missing Controls
.

102

www.kepware.com

ClientAce OPC .NET Toolkit Help

3. To add a control, drag it from the Toolbox and drop it onto a form.

The Control at Runtime

At Runtime, the ServerState control looks like this:

103

www.kepware.com

ClientAce OPC .NET Toolkit Help

Note: Initially, the tag count displayed in the Total Tag Count and Active Tag Count fields is 6, to account for the six
state properties that are displayed: Client Count, Total Tag Count, Active Tag Count, Date, Time, and Project Name.

ChannelSettings Control

The ChannelSettings control provides the functionality to view and make certain changes to the properties of a
channel in an OPC server provided by Kepware Technologies.

Note: If there are multiple KEPServerEX OPC servers installed on the local machine, the ChannelSettings control
retrieves the channel properties of the server that was installed most recently.

Adding the Control to the Visual Studio Project

Remember that all referenced controls must be on the local drive. Assemblies that are located on a network drive
should not be referenced, because it will cause the Visual Studio error "Unable to cast object of type <type> to
<type>." This is a limitation of the Microsoft .NET development environment.

1. Open a new or existing project (solution) in Visual Studio.

2. Verify that all of the ClientAce controls have been added to the Visual Studio Environment. In Visual Studio, the
Toolbox should include the controls shown below. For more information on adding controls to the Toolbox, refer
to Adding Controls to the Visual Studio Environment.

3. To add a control, drag it from the Toolbox and drop it onto a form. The image below shows the ChannelSettings
control being added to a form.

104

www.kepware.com

ClientAce OPC .NET Toolkit Help

The ChannelSettings Control at Runtime

Remember that the control will have different tabs depending upon the type of channel (either serial or ethernet) to
which the control links.

To link the ChannelSettings control to a specific channel, perform the following steps:

1. Right-click on the ChannelSettings control and select Properties.

2. Click on ChannelName and enter Channel_1. In this example, Channel_1 is used because that node name is
present in the sample KEPServerEX OPC project.

105

www.kepware.com

ClientAce OPC .NET Toolkit Help

The Channel Settings tab displays the channel properties. If the channel used a network adapter, it would be listed in
the Network Adapter field. Values in the Network Adapter field and W/R Duty Cycle field can be modified as needed.
The Enable Channel Diagnostics checkbox is used to display diagnostics information in a separate Diagnostics tab,
as shown in the following screenshots.

The Device_1 and Device_2 tabs display the properties of the two devices configured under the channel. If more
devices were configured, the window would display a tab for each. Although the Device Properties are displayed, they
cannot be modified in this window.

106

www.kepware.com

ClientAce OPC .NET Toolkit Help

Kepware.ClientAce.KEPServerEXControls

KEPServerExChannelSettings

Although these properties can only be set at the time of design, they are accessible as Read Only properties at
Runtime.

Public Property Data Type Description

ChannelName String The Channel Name of a channel in the server to which the control is
connected.

NodeName String The location of the server to which the control is connected. This is called the
"localhost" in a local connection. IP Address of the Host Name for a remote
connection.

ProgID String The Program ID of the server to which the Channel Settings Control is
connected.

KEPServerExServerState

Although the properties can only be set at the time of design, they are accessible as Read Only properties at Runtime.

Public Property Data Type Description

NodeName String The location of the server to which the control is connected. This is called the
"localhost" for a local connection. IP Address of the Host Name for a remote
connection.

ProgID String The Program ID of the server to which the Channel Settings Control is
connected.

Demo Mode

Unless ClientAce is licensed and all Runtime applications built with ClientAce .NET controls have been signed, the
applications will run in demo mode for one hour. After the demo period expires, another demonstration period can be
started by restarting the application. After ClientAce is licensed and the Runtime applications built with ClientAce .NET
controls are signed, the applications will run in unlimited Runtime operation.

See Also:

Licensing ClientAce

Signing Your Client Application

107

www.kepware.com

ClientAce OPC .NET Toolkit Help

Licensing ClientAce

ClientAce .NET controls on the development PC must be licensed in order for custom client applications to be signed for
unlimited Runtime operation. If the applications are not licensed, they will run in demo mode.

Note: For all licensing questions, please contact Kepware Technologies at ca.licensing@kepware.com or (888) 537-
9273 ext. 211.

To License ClientAce
1. Click Start | Programs | Kepware Products | ClientAce | License ClientAce.

2. In the Kepware ClientAce License dialog, click Acquire License.

3. The Registration Information dialog is displayed. As the Name and Company fields get types, the License
Information field will be populated with the licensing information needed by Kepware Technologies.

108

www.kepware.com

ClientAce OPC .NET Toolkit Help

4. Click OK. An email message window from your email client application will be displayed. To send the message to
Kepware Technologies, click Send.

5. Kepware Technologies will then send an email reply containing the licensing code. Copy the code into the
Kepware ClientAce License dialog window, as shown below.

6. Click Register License. After the confirmation message is displayed, click OK to close the dialog.

109

www.kepware.com

ClientAce OPC .NET Toolkit Help

7. Now that ClientAce is licensed, the custom client applications that have been built may now be signed.

See Also: Signing Your Client Application

Signing Your Client Application

Applications created using a ClientAce .NET controls must be signed before they will run for unlimited Runtime
operation. If the application is not signed, it will run in demo mode.

Note: ClientAce must be licensed from Kepware Technologies before applications can be signed. For more information,
refer to Licensing ClientAce.

To Sign the Custom Client Application Using the Visual Studio Sign Add-in:

Open the project that needs to be signed, and click the Sign icon in the toolbar. This will tag the project's executable
file to be signed whenever the project is built.

Note: The license file (*.lic) is saved in the same folder as the executable file.

The project is now set to be signed automatically every time the project is built.

Manually Signing Your Custom Client Application

If the VS Add-in tool was not chosen to sign the custom client application, follow these steps to sign it manually.

Note: If the application was signed manually, the steps must be repeated to sign the application every time the project

110

www.kepware.com

ClientAce OPC .NET Toolkit Help

is built.
1. Select Start | Programs | Kepware Products| ClientAce| Sign Executable.

2. In the Signing GUI dialog, click the ellipses to browse for your application's executable file.

3. When choosing the executable file, the signed license code is displayed in the License File field. Note that the
license file (*.lic) is saved in the same folder as the executable file.

4. Click OK to save and exit.

Note: The license file (*.lic) is saved to the same folder that is chosen for the build output path in Project Compile
Preferences.

 In VS2003 and VS2005, the default output path is in bin\Debug\ in the project folder.

 In VS2008, the default output path is in bin\Release.

As a result of this change, VS2008 users will run in Demo mode (and will see the Demo Mode popup) when testing a
project in Debug Mode that has been signed. To change this behavior, change the output path to \bin\Debug.

Deploying Your Client Application

Select a link from the following list in order to obtain information on a specific version of Visual Studio and .NET
Assemblies.

Visual Studio 2003 and Visual Studio 2005 (.NET 1.1.0.x Assemblies)

Visual Studio 2008 and Visual Studio 2010 (.NET 3.5.0.x Assemblies)

Visual Studio 2003 and Visual Studio 2005 (.NET 1.1.0.x Assemblies)

Depending on the ClientAce features being used by the application, one or more of the following files may be required
for the application to run properly:

Name Version

Kepware.ClientAce.Base.dll 1.1.0.x

Kepware.ClientAce.BrowseControls.dll 1.1.0.x

Kepware.ClientAce.Da_Junction.dll 1.1.0.x

Kepware.ClientAce.KEPServerExControls.dll 1.1.0.x

Kepware.ClientAce.OpcClient.dll 1.1.0.x

YourCustomClientAceApplication.exe
YourCustomClientAceApplication.lic

These files will be located in the output build directory created by Visual Studio for the project. When deploying the
client application created using ClientAce and the .NET 1.1.0.x Assemblies, these files must be installed in the same
location as the custom client executable files.

.NET Framework Requirements

111

www.kepware.com

ClientAce OPC .NET Toolkit Help

.NET Framework 1.1 must be installed on the PC on which the client will deploy custom client applications created using
ClientAce and the .NET 1.1.0.x Assemblies. If the client application utilizes functionality from a version of the .NET
Framework that is higher then the .NET 1.1 Framework, then that version also will be required to be installed. To check
if .NET Framework is installed, follow the instructions below.

1. Click Start on the Windows desktop.

2. Select the Control Panel.

3. Double-click on the Add or Remove Programs icon.

4. Next, scroll through the list of applications. If Microsoft .NET Framework 1.1 is listed, the version required by
ClientAce is already installed and does not need to be installed again.

To obtain versions of the .NET Framework, click Start on the Windows desktop and then select Windows Update.

Note: The actual ClientAce install does not need to be installed on the destination computer in order for the custom
ClientAce application to work.

See Also:

System and Application Requirements

Licensing ClientAce

Signing Your Client Application

Visual Studio 2008 and Visual Studio 2010 (.NET 3.5.0.x Assemblies)

Depending on the ClientAce features being used by the application, one or more of the following files may be required
for the application to run properly:

Name Version

Kepware.ClientAce.BrowseControls.dll 3.5.0.x

Kepware.ClientAce.Da_Junction.dll 3.5.0.x

Kepware.ClientAce.KEPServerExControls.dll 3.5.0.x

Kepware.ClientAce.OpcClient.dll 3.5.0.x

YourCustomClientAceApplication.exe
YourCustomClientAceApplication.lic

These files will be located in the project's output build directory which was created by Visual Studio. When deploying
the client application created using ClientAce and the .NET 3.5.0.x Assemblies, these files must be installed in the same
location as the custom client executable files.

.NET Framework Requirements

.NET Framework 3.5 Service Pack 1 must be installed on the PC on which the client deploys the custom client
applications created using ClientAce and the .NET 3.5.0.x Assemblies. If the client application utilizes functionality from
a version of the .NET Framework that is higher than the .NET 3.5 Framework, then that version is also required to be
installed. To check if .NET Framework is installed, follow the instructions below.

1. Click Start on the Windows desktop.

2. Select the Control Panel.

3. Double-click on the Add or Remove Programs icon.

4. Next, scroll through the list of applications. If Microsoft .NET Framework 3.5 SP1 is listed, the version required by
ClientAce is already installed and does not need to be installed again.

To obtain versions of the .NET Framework, click Start on the Windows desktop and then select Windows Update.

Note: The actual ClientAce install does not need to be installed on the destination computer in order for the custom
ClientAce application to work.

112

www.kepware.com

ClientAce OPC .NET Toolkit Help

See Also:

System and Application Requirements

Licensing ClientAce

Signing Your Client Application

Troubleshooting

Click on the following topics for descriptions of common troubleshooting problems.

Missing Controls

Referencing Controls

CoInitializeSecurity

Visual Studio 2005 and .Net 1.1.0.x Assemblies LoaderLock Exception

Removing Blank Toolbar Options after Uninstalling ClientAce (VS 2005)

ASP .NET Development Incompatibility

Visual Studio 2008 and 2010

Visual Studio 2010

Microsoft Visual Studio Environment Configuration

Missing Controls

The following controls are typically added to the system's Visual Studio Environment automatically during the ClientAce
installation process. If the Toolbox does not have any of the ClientAce controls, it is possible that the controls were
unchecked during the ClientAce installation process.

ClientAce Controls (required)

 DA_Junction

 ServerBrowser

 ItemBrowser

Kepware-specific Controls (optional)
 ClientAceKEPServerEXChannelSettings

 ClientAceDEPServerEXServerState

Adding ClientAce Controls to the Visual Studio Environment

Important: All referenced controls must be on the local drive. Assemblies that are located on a network drive should
not be referenced, as this will cause the Visual Studio error "Unable to cast object of type <type> to <type>." This is a
limitation of the Microsoft .NET development environment.

1. Open a new C# or Visual Basic project using the Visual Studio .Net application.

2. Right-click anywhere on the ToolBox window and select Add Tab.

113

www.kepware.com

ClientAce OPC .NET Toolkit Help

3. Enter "ClientAce" in the empty box. This creates the ClientAce tab.

4. Right-click anywhere on the ClientAce tab and select Add/Remove Items.

Note: In Visual Studio 2005, this will be Choose Items.

114

www.kepware.com

ClientAce OPC .NET Toolkit Help

5. In the Customize Toolbox window, click on the Browse. Navigate to the directory where the ClientAce.dll files
are stored.

115

www.kepware.com

ClientAce OPC .NET Toolkit Help

6. First, click to select the .dll file that contains the controls yet to be added. Then, click Open (or double-click the .dll
file).

Kepware.ClientAce.DA_Junction.dll: DA Junction control
Kepware.ClientAce.BrowseControls.dll: ServerBrowser and ItemBrowser controls
Kepware.ClientAce.KEPServerExControls.dll: ChannelSettings and ServerState

Note: For more information, refer to Additional ClientAce Controls.

116

www.kepware.com

ClientAce OPC .NET Toolkit Help

7. Select a .dll file to display the Customize Toolbox window. In the example shown below, the ClientACE.DA_Junction
library is now checked for inclusion.

117

www.kepware.com

ClientAce OPC .NET Toolkit Help

8. To add other controls, click Browse and select another .dll file. Repeat until all the control files (all the .dll files) have
been added to the Customize Toolbox for inclusion.

9. Click OK at the bottom of the Customize Toolbox window. The Toolbox will display all controls that have been
added.

Note: To display the applicable references in the Solution Explorer, select View | Solution Explorer. Controls that
have been added to the Visual Studio Environment can also be added to the Visual Studio project by dragging them
from the Toolbox | ClientAce tab onto the form. For more information, refer to Additional ClientAce Controls.

Referencing Controls

All referenced controls must be on the local drive. Assemblies that are located on a network drive should not be
referenced, as this will cause the Visual Studio error "Unable to cast object of type <type> to <type>." This is a
limitation of the Microsoft .NET development environment.

CoInitializeSecurity

The ClientAce application must set its security credentials such that an OPC server has the privilege to send
OnDataChange/OnServerShutDown notifications to the client. In order to set the security credentials, a ClientAce
application must set the security level using CoInitializeSecurity during the initialization of the application.

In order to call CoInitializeSecurity in the ClientAce application, see the VB and C# examples shown below.

Visual Basic Example

' .Net library for Interoperability

Imports System.Runtime.InteropServices

' declaring the enums for the CoInitializeSecurity call

Public Enum RpcImpLevel

 E_Default = 0 E_Anonymous = 1

 E_Identify = 2 E_Impersonate = 3

 E_Delegate = 4 End Enum

Public Enum EoAuthnCap

 E_None = &H0

 E_MutualAuth = &H1

 E_StaticCloaking = &H20

 E_DynamicCloaking = &H40

 E_AnyAuthority = &H80

 E_MakeFullSIC = &H100

 E_Default = &H800

 E_SecureRefs = &H2

 E_AccessControl = &H4

 E_AppID = &H8

118

www.kepware.com

ClientAce OPC .NET Toolkit Help

 E_Dynamic = &H10

 E_RequireFullSIC = &H200

 E_AutoImpersonate = &H400

 E_NoCustomMarshal = &H2000

 E_DisableAAA = &H1000 End Enum

Public Enum RpcAuthnLevel

 E_Default = 0 E_None = 1

 E_Connect = 2 E_Call = 3

 E_Pkt = 4 E_PktIntegrity = 5

 E_PktPrivacy = 6 End Enum

'end of enums declared for the CoInitializeSecurity call

(Continued)

(VB example continuation)

Public Class Form1

 Inherits System.Windows.Forms.Form

 ' declare the CoInitializeSecurity signature within the class where it

 ' should be called (must be called before launching form

 Declare Function CoInitializeSecurity Lib "ole32.dll"

(

 ByVal pVoid As IntPtr, _

 ByVal cAuthSvc As Integer, ByVal asAuthSvcByVal As IntPtr, _

 ByVal pReserved1 As IntPtr, ByVal dwAuthnLevel As Integer, ByVal dwImpLevel
As Integer, _

 ByVal pAuthList As IntPtr, ByVal dwCapabilities As Integer, ByVal pReserved3
As IntPtr) As Integer

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 ' good place to call CoInitializeSecurity

 CoInitializeSecurity(IntPtr.Zero, -1, IntPtr.Zero, _

119

www.kepware.com

ClientAce OPC .NET Toolkit Help

 IntPtr.Zero, RpcAuthnLevel.E_None, _

 RpcImpLevel.E_Impersonate, IntPtr.Zero, EoAuthnCap.
E_None, IntPtr.Zero)

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

C# Example

// .net library required for interoperability

using System.Runtime.InteropServices;

// ******Enums required for CoInitializeSecurity call through C#.......//

public enum RpcImpLevel

 { Default = 0, Anonymous = 1,

 Identify = 2, Impersonate = 3,

 Delegate = 4 }

public enum EoAuthnCap

 { None = 0x00,

 MutualAuth = 0x01,

 StaticCloaking= 0x20,

 DynamicCloaking= 0x40,

 AnyAuthority= 0x80,

 MakeFullSIC= 0x100,

 Default= 0x800,

 SecureRefs= 0x02,

 AccessControl= 0x04,

 AppID= 0x08,

 Dynamic= 0x10,

 RequireFullSIC= 0x200,

 AutoImpersonate= 0x400,

 NoCustomMarshal= 0x2000,

 DisableAAA= 0x1000 }

120

www.kepware.com

ClientAce OPC .NET Toolkit Help

public enum RpcAuthnLevel

 { Default = 0, None = 1,

 Connect = 2, Call = 3,

 Pkt = 4, PktIntegrity = 5,

 PktPrivacy = 6 }

/*****************end of enum declarations for CoInitializeSecurity call******/

(Continued)

(C# example continuation)

namespace CSharpTestClient

{

public class Form1 : System.Windows.Forms.Form

 { // Import the CoInitializeSecurity call from

 [DllImport("ole32.dll", CharSet = CharSet.Auto)]

 public static extern int CoInitializeSecurity(IntPtr pVoid, int

cAuthSvc,IntPtr asAuthSvc, IntPtr pReserved1, RpcAuthnLevel level, RpcImpLevel
impers,IntPtr pAuthList, EoAuthnCap dwCapabilities, IntPtr

 pReserved3);

private Kepware.ClientAce.DA_Junction.ClientAceDA_Junction clientAceDA_Junction1;

 private System.Windows.Forms.TextBox textBox1;

 public Form1()

 {

 InitializeComponent();

}

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

 {

// call the CoInitializeSecurity right before Launching the Application

121

www.kepware.com

ClientAce OPC .NET Toolkit Help

 CoInitializeSecurity(IntPtr.Zero, -1, IntPtr.Zero,

 IntPtr.Zero,RpcAuthnLevel.None ,

RpcImpLevel.Impersonate,IntPtr.Zero, EoAuthnCap.None, IntPtr.Zero);

 Application.Run(new Form1());

 }

 }

}

Visual Studio 2005 and .Net 1.1.0.x Assemblies LoaderLock Exception

LoaderLock Exception
While developing an application with Visual Studio 2005 and the .Net 1.1.0.x Assemblies ClientAce components, a
LoaderLock Exception dialog may be encountered when attempting to run within the context of the Visual Studio
Debugger.

This warning occurs due to the use of Mixed (Native and Managed) Assemblies used by the ClientAce components. It is
possible that the initialization of Mixed Assemblies could cause a deadlock in an application if the assemblies do not
follow the strict requirements for initialization. ClientAce follows these rules, and this warning can be safely ignored.

Since Visual Studio may not properly start the application in the debugger after displaying this warning, it is
recommended that the Managed Debug Assistant for the LoaderLock exception is disabled as follows:

1. Stop debugging.
2. Select Debug | Exceptions.
3. Expand the Managed Debug Assistance item.
4. Deselect the Thrown checkbox associated with the LoaderLock item.
5. Select OK.
6. Restart debugging.

122

www.kepware.com

ClientAce OPC .NET Toolkit Help

Removing Blank Toolbar Options after Uninstalling ClientAce (VS 2005)

If ClientAce is uninstalled, the Microsoft Visual Studio 2005 toolbar will have a blank space where the Sign and Unsign
icons were. For more information, refer to How to Sign an Application.

Note: This is only an issue with Visual Studio 2005, not VS 2003.

To remove the blank toolbar options from Visual Studio 2005 after uninstalling ClientAce:
1. In Visual Studio, click on the small arrow on the right edge of the blank toolbar option, then select Add or

Remove Buttons.

2. Select Customize.

3. In the Toolbars tab, scroll down to Kepware Sign Bar. Check Kepware Sign Bar, then click the Delete button.

123

www.kepware.com

ClientAce OPC .NET Toolkit Help

ASP .NET Development Incompatibility

ClientAce cannot be used to develop ASP .NET applications. If ASP .NET OPC clients must be developed, please contact
Kepware Technical Support.

Visual Studio 2008 and 2010

Creating New Projects

When creating a new project, users must set the project's Target framework to .NET Framework 3.5. To do so, open
the Compile tab in My Project. Then, select Advanced Compile Options… | Advanced Compiler Settings and
specify .NET Framework 3.5. Upon completion, click OK.

64 Bit Operating Systems

When running a 64 bit Operating System, users must set the project's Target CPU to x86. To do so, open the Compile
tab in My Project. Then, select Advanced Compile Options... | Advanced Compiler Settings and specify x86.
Upon completion, click OK.

Visual Studio 2010

Using Visual Studio 2008 Examples with Visual Studio 2010

Visual Studio 2008 examples may be used with Visual Studio 2010 after they have been converted to Visual Studio
2010 solutions. To do so, utilize the Visual Studio Conversion Wizard. Afterwards, the examples may be compiled and
run.

Installing Visual Studio 2010 when Visual Studio 2008 and ClientAce are Currently Installed

Users who want to install Visual Studio 2010 when Visual Studio 2008 and ClientAce are currently installed should use
the following procedure.

1. To start, install Visual Studio 2010. Then, run the program.

2. In Choose Default Environment Settings, select the desired environment.

124

www.kepware.com

ClientAce OPC .NET Toolkit Help

3. Once finished, click Start Visual Studio. Then, close Visual Studio.

4. Next, run the ClientAce setup and select Modify. Then, continue through the installation.

Note: This procedure is recommended because the Sign Toolbar and ClientAce Toolbox will not successfully
migrate from Visual Studio 2008. As a result, both the Sign Toolbar and the ClientAce Toolbox added to Visual
Studio 2010 will be invalid.

Repairing the Invalid Sign Toolbar and ClientAce Toolbox Added by Migrate Settings

Users whose install of Visual Studio 2010 migrated settings from Visual Studio 2008 can use the following procedure to
repair the invalid Sign Toolbar and ClientAce Toolbox.

1. Run the ClientAce setup and select Modify.

2. Then, continue through the installation.

Manually Removing the Sign Toolbar and ClientAce Toolbox Added by Migrate Settings

Users who do not want to use ClientAce with Visual Studio 2010 (or whose migration of the Visual Studio 2008 settings
added an invalid Sign Toolbar and ClientAce Toolbox) can use the following procedure to manually remove the Sign
Toolbar and ClientAce Toolbox.

1. To start, open Visual Studio 2010.

2. Locate the Toolbox window. Then, right-click and select Show All.

3. Next, right-click on ClientAce Tab and select Delete Tab.

4. Then, click View | Toolbars | Customize.

5. Locate the Kepware Sign Bar and then select Delete.

Microsoft Visual Studio Environment Configuration

While running the ClientAce setup, users may be presented with the following message:

At this point, the specified user must run Microsoft Visual Studio and finish setting up the default Visual Studio
environment. Once completed, the ClientAce setup may continue.

Note: The ClientAce setup cannot add toolbars or toolbox items until the Visual Studio environment has been
configured for the current user.

Appendices

Appendix 1 ResultID Codes

Appendix 2 QualityID Codes

Appendix 3 QualityID LimitBits and Name

125

www.kepware.com

ClientAce OPC .NET Toolkit Help

Appendix 1 - ResultID Codes Enumeration

The ResultID.Code can take the following values. For more information, refer to ResultID Class.

Value Description

CONNECT_E_ADVISELIMIT Advise limit exceeded for this object

CONNECT_E_NOCONNECTION The client has no callback registered

DISP_E_TYPEMISMATCH Type mismatch

E_BADRIGHTS The item's access rights do not allow the operation

E_BADTYPE The server cannot convert the data between the
specified format and/or requested data type and the
canonical data type

E_DEADBANDNOTSET The item deadband has not been set for this item

E_DEADBANDNOTSUPPORTED The item does not support deadband

E_DUPLICATENAME Duplicate name not allowed

E_FAIL Unknown error

E_INVALID_PID The specified propertyID is not valid for the item

E_INVALIDARG An invalid parameter was passed to a method call

E_INVALIDCONFIGFILE The server's configuration file is an invalid format

E_INVALIDCONTINUATIONPOINT The continuation point is not valid

E_INVALIDFILTER The filter string is not valid

E_INVALIDHANDLE The handle value is not valid

E_INVALIDITEMID The ItemID does not conform to the server's syntax

E_NOBUFFERING The server does not support buffering of data items that
are collected at a faster rate than the group update rate

E_NOTFOUND The requested object (e.g. a public group) was not found

E_NOTSUPPORTED The server does not support writing of quality and/or
timestamp

E_PUBLIC The requested operation cannot be done on a public
group

E_RANGE The value is out of range

E_RATENOTSET There is no sampling rate set for the specified item

E_UNKNOWNITEMID The ItemID was refused by the server

E_UNKNOWNPATH The item's access path is not known to the server

RPC_S_CALL_FAILED Remote procedure call failed

RPC_S_SERVER_UNAVAILABLE The RPC server is currently not available

S_CLAMP A value passed to write was accepted but the output was
clamped

S_DATAQUEUEOVERFLOW Not every detected change has been returned since the
server's buffer reached its limit and had to purge the
oldest data

S_INUSE The operation cannot be performed because the object is
being referenced

S_UNSUPPORTEDRATE The server does not support the requested data rate but
will use the closest available rate

WIN_S_FALSE The function was partially successful

WIN_S_OK Operation succeeded

Appendix 2 - QualityID Codes

The Quality.FullCode can take the following values. For more information, refer to QualityID Class.

126

www.kepware.com

ClientAce OPC .NET Toolkit Help

Value Description

OPC_QUALITY_BAD Bad quality. Reason unknown.

OPC_QUALITY_COMM_FAILURE Bad quality. Communications have failed and there is no
last known value.

OPC_QUALITY_CONFIG_ERROR Bad quality. There is as server configuration problem,
such as the item in question has been deleted.

OPC_QUALITY_DEVICE_FAILURE Bad quality. Device failure detected.

OPC_QUALITY_EGU_EXCEEDED Uncertain quality. The returned value is outside the EGU
limits defined for item.

OPC_QUALITY_GOOD Good quality.

OPC_QUALITY_LAST_KNOWN Bad quality. Communications have failed but there is a
last known value available.

OPC_QUALITY_LAST_USABLE Uncertain quality. A data source has not provided the
server with a data update within the expected time
period. The last known value is returned. Note, this is
different from the OPC_QUALITY_LAST_KNOWN quality,
which is used when the server is unable to read a value
from a device. In this case, a data source has failed to
write a value to the server in an unsolicited manner.

OPC_QUALITY_LOCAL_OVERRIDE Good quality. The value has been overridden. This may
indicate that an input has been disconnected and the
returned value has been manually "forced".

OPC_QUALITY_NOT_CONNECTED Bad quality. It has been determined that an input is
disconnected, or that no value has been provided by
data source yet.

OPC_QUALITY_OUT_OF_SERVICE Bad quality. The item is off scan, locked, or inactive.

OPC_QUALITY_SENSOR_CAL Uncertain quality. The value has either exceeded the
sensor's limits (limit bits should be set to 1 or 2), or the
sensor is known to be out of calibration (limit bits should
be 0).

OPC_QUALITY_SENSOR_FAILURE Bad quality. A sensor failure has been detected. Lth limit
bits may provide additional information.

OPC_QUALITY_SUB_NORMAL Uncertain quality. The value is derived from multiple
sources, and fewer than the required number are good.

OPC_QUALITY_UNCERTAIN Uncertain quality. No specific reason known.

OPC_QUALITY_WAITING_FOR_INITIAL_DATA Bad quality. No value has been provided to the server
yet.

Appendix 3 - QualityID LimitBits and Name

The full quality code is 16 bits: VVVVVVVVQQSSSSLL where V=vendor, Q=quality, S=substatus, L=limit.

Quality

QQ Bit Value Definition Notes

0 00SSSSLL Bad The value is not userful for the reasons indicated by the substatus.

1 01SSSSLL Uncertain The quality of the value is uncertain for the reasons indicated by the
substatus.

2 10SSSSLL N/A Not used by OPC.

3 11SSSSLL Good The quality of the value is Good.

Note: Servers that do not support quality information must return 3 (Good). It is also acceptable for a server to return
Bad or Good (0x00 or 0xC0) and to always return 0 for substatus and limit.

Substatus for Bad Quality

SSSS Bit Value Definition Notes

0 000000LL Nonspecific The value is bad but no specific reason is known.

127

www.kepware.com

ClientAce OPC .NET Toolkit Help

1 000001LL Configuration
Error

There is a server-specific problem with the configuration (e.g., the
item has been deleted from the configuration).

2 000010LL Not Connected The input that is required to be logically connected is missing. This
quality may indicate that no value is available at this time for a
reason such as the data source did not provide the value.

3 000011LL Device Failure A device failure has been detected.

4 000100LL Sensor Failure A sensor failure has been detected. The limit field may provide
additional diagnostic information.

5 000101LL Last Known Value Communications have failed; however, the last known value is
available. Note that the age of the value can be determined from the
TIMESTAMP value in OPCITEMSTATE.

6 000110LL Communications
Failure

Communications have failed. There is no last known value available.

7 000111LL Out of Service The block is off-scan or otherwise locked. This quality is also used
when the active state of the item or the group containing the item is
InActive.

8 N/A Not used by OPC.

Note: Servers that do not support substatus information should return 0.

Substatus for Uncertain Quality

SSSS Bit Value Definition Notes

0 010000LL Nonspecific Indicates that there is no specific reason why the value is uncertain.

1 010001LL Last Usable Value Whatever was writing this value has stopped. The returned value
should be regarded as "stale."

Note that Last Usable Value is different from a bad value with
substatus 5 (Last Known Value), which specifically indicates a
detectable communications error on a "fetched" value. Last Usable
Value indicates the failure of some external source to send a value
within an acceptable period of time. The age of the value can be
determined from the TIMESTAMP value in OPCITEMSTATE.

2-3 N/A Not used by OPC.

4 010100LL Sensor Not
Accurate

Either the value has "pegged" at one of the sensor limits (in which
case the limit field should be set to 1 or 2) or the sensor is otherwise
known to be out of calibration as indicated by some form of internal
diagnostics (in which case the limit field should be 0).

5 010101LL Engineering Units
Exceeded

The value returned is outside of the limits defined for that
parameter. Note that in this case the limit field indicates which limit
has been exceeded but that does NOT necessarily mean that the
value cannot move farther out of range.

6 010110LL Sub-normal The value is derived from multiple sources and has less than the
required number of good sources.

7-15 N/A Not used by OPC.

Note: Servers that do not support substatus information should return 0.

Substatus for Good Quality

SSSS Bit Value Definition Notes

0 110000LL Nonspecific The value is good and there are no special conditions.

1-5 N/A Not used by OPC.

6 110110LL Local Override The value has been overridden. Typically this is because the input
has been disconnected and a manually entered value has been
"forced."

7-15 N/A Not used by OPC.

Note: Servers that do not support substatus information should return 0.

128

www.kepware.com

ClientAce OPC .NET Toolkit Help

Limit

LL Bit Value Definition Notes

0 QQSSSS00 Not Limited The value is free to move up or down.

1 QQSSSS01 Low Limited The value has "pegged" at some lower limit.

2 QQSSSS10 High Limited The value has "pegged" at some high limit.

3 QQSSSS11 Constant The value is a constant and it cannot move.

Note: The limit value is valid regardless of the quality and substatus values. In some cases, such as Sensor Failure, the
limit value can provide useful diagnostic information. Servers that do not support limit information should return 0.

ClientAce OPC .NET Toolkit Help129

www.kepware.com

Index
- A -
Adding Controls to the Visual Studio Environment
 112

Additional ClientAce Controls 84

Appendix 124

Appendix 3 QualityID LimitBits and Name 126

ASP .NET 123

- B -
Browse 17

- C -
ChannelSettings Control 103

Class BrowseElement 9

Class ConnectInfo 11

Class DaServerMgt 7

Class ItemProperties 10

Class ItemProperty 10

Class ItemResultCallback 9

Class ItemValue 8

Class ItemValueCallback 8

Class QualityID 11

Class ResultID 11

ClientAce .NET API 5

ClsidFromProgID Method 62

CoInitializeSecurity 117

Connect 13

Creating DaServerMgt Object 13

Creating OpcServerEnum Object 59

- D -
DA Junction .NET Control 64

DA Junction Configuration Window 66

Data Types Description 84

Demo Mode 106

Deployment 110

Disable Datachange while Control has focus 82

Disconnect 16

- E -
EnumComServer Method 59

Enumerator BrowseFilter 10

Enumerator ServerState 7

Event DataChanged 51

Event ReadCompleted 55

Event WriteCompleted 53

- G -
GetProperties 23

- H -
Help Contents 4

- I -
Introduction 4

IsConnected 16

ItemBrowser Control 98

ItemIdentifier Class 7

- K -
Kepware Technologies Support

Contacting 107

Kepware.ClientAce.OPCCMN Interface of
OpcServerEnum Object 59

Kepware.ClientAce.OPCCMN ServerCategory
Enumerator 6

Kepware.ClientAce.OPCCMN ServerIdentifier
Class 6

Kepware.ClientAce.OpcDaClient Data Model
Classes 6

Kepware.ClientAce.OpcDaClient Interface of
DaServerMgt 12

- L -
LoaderLock Exception 121

Index 130

www.kepware.com

- M -
Microsoft Visual Studio Environment Configuration
 124

- O -
Overview 4

Overview of ClientAce .NET API 5

Overview_DA_Junction 64

- P -
Project Setup 65

- Q -
QualityID Codes 125

- R -
Read 47

ReadAsync 44

Referencing Controls 117

Removing Blank Toolbar Options after Uninstalling
ClientAce (VS 2005) 122

ResultID Codes 125

ReturnCode Enumerator 12

- S -
Sample Project Using C# or VB.NET 71

ServerBrowser Control 96

ServerState Control 101

ServerState Property 17

ServerStateChanged Event 58

Signing Your Client Application 109

Subscribe 26

SubscriptionAddItems 32

SubscriptionCancel 38

SubscriptionModify 29

SubscriptionRemoveItems 35

System and Application Requirements 5

System Requirements 5

- T -
Troubleshooting 112

- U -
Update Rate of tag items 80

- V -
Visual Studio 2003 and Visual Studio 2005 (.NET
1.1.0.x Assemblies) 110

Visual Studio 2005 and .Net 1.1.0.x Assemblies
LoaderLock Exception 121

Visual Studio 2008 and 2010 123

Visual Studio 2008 and Visual Studio 2010 (.NET
3.5.0.x Assemblies) 111

Visual Studio 2010 123

- W -
Write 42

WriteAsync 39

	ClientAce
	Getting Started
	Help Contents
	ClientAce Overview

	System and Application Requirements
	System and Application Requirements

	ClientAce .NET API
	ClientAce .NET API
	Overview of ClientAce .NET API
	Kepware.ClientAce.OPCCmn ServerIdentifier Class
	Kepware.ClientAce.OPCCmn ServerCategory Enumeration
	Kepware.ClientAce.OpcDaClient Data Model Classes
	Kepware.ClientAce.OpcDaClient Data Model Classes
	DaServerMgt Class
	ServerState Enumeration
	ItemIdentifier Class
	ItemValue Class
	ItemValueCallback Class
	ItemResultCallback Class
	BrowseElement Class
	BrowseFilter Enumeration
	ItemProperties Class
	ItemProperty Class
	ResultID Class
	QualityID Class
	ConnectInfo Class
	ReturnCode Enumeration

	Kepware.ClientAce.OpcDaClient Interface of DaServerMgt
	Kepware.ClientAce.OpcDaClient Interface of DaServerMgt
	Creating DaServerMgt Object
	Connect Method
	Disconnect Method
	IsConnected Property
	ServerState Property
	Browse Method
	GetProperties Method
	Subscribe Method
	SubscriptionModify Method
	SubscriptionAddItems Method
	SubscriptionRemoveItems Method
	SubscriptionCancel Method
	WriteAsync Method
	Write Method
	ReadAsync Method
	Read Method
	DataChanged Event
	WriteCompleted Event
	ReadCompleted Event
	ServerStateChanged Event

	Kepware.ClientAce.OPCCmn Interface of OpcServerEnum Object
	Kepware.ClientAce.OPCCmn Interface of OpcServerEnum Object
	Creating OpcServerEnum Object
	EnumComServer Method
	ClsidFromProgID Method

	DA Junction .NET Control
	DA Junction .NET Control
	Overview of ClientAce DA Junction
	ClientAceDA_Junction
	Project Setup
	Project Setup
	DA Junction Configuration Window
	A Sample Project Using DA Junction with VB.NET or C#
	Item Update Rate
	Disable Datachange while Control Has Focus

	Data Types Description
	Data Types Description

	Additional ClientAce .NET Controls
	Additional ClientAce .NET Controls
	ClientAce Browser Controls
	ClientAceServerBrowser
	ClientAceItemBrowser
	OpcDaItem Class
	OPCUrl Class
	AccessRights Enumerated Values
	NodeType Enumerated Values
	OPCType Enumerated Values
	ServerBrowser Control
	ItemBrowser Control

	KEPServerEX Browser Controls
	ServerState Control
	ChannelSettings Control
	Kepware.ClientAce.KEPServerEXControls

	Demo Mode
	Demo Mode

	Licensing ClientAce
	Licensing ClientAce

	Signing Your Client Application
	Signing Your Client Application

	Deploying Your Client Application
	Deploying Your Client Application
	Visual Studio 2003 and Visual Studio 2005 (.NET 1.1.0.x Assemblies)
	Visual Studio 2008 and Visual Studio 2010 (.NET 3.5.0.x Assemblies)

	Troubleshooting
	Troubleshooting
	Missing Controls
	Referencing Controls
	CoInitializeSecurity
	Visual Studio 2005 and .Net 1.1.0.x Assemblies LoaderLock Exception
	Removing Blank Toolbar Options after Uninstalling ClientAce (VS 2005)
	ASP .NET Development Incompatibility
	Visual Studio 2008 and 2010
	Visual Studio 2010
	Microsoft Visual Studio Environment Configuration

	Appendices
	Appendices
	Appendix 1 ResultID Codes
	Appendix 2 QualityID Codes
	Appendix 3 QualityID LimitBits and Name

