
ClientAce User Manual

© 2017 PTC Inc. All Rights Reserved.

ClientAce

Table of Contents
1

ClientAce User Manual 1

Table of Contents 2

Contents 5

Overview 5

System and Application Requirements 6

Runtime Requirements 8

ClientAce .NET API Assembly 9

EndPointIdentifier Class 9

PkiCertificate Class 10

toDER Method 11

fromDER Method 12

toWindowsStore Method 13

toWindowsStoreWithPrivateKey Method 15

fromWindowsStore Method 16

fromWindowsStoreWithPrivateKey Method 19

ServerIdentifier Class 21

ServerCategory Enumeration 22

WinStoreLocation Enumeration 22

OpcServerEnum Object 22

ClsidFromProgID Method 23

EnumComServer Method 24

getCertificateForEndpoint Method 26

getEndpoints Method 28

Kepware.ClientAce.OpcDaClient Namespace 29

BrowseElement Class 30

ConnectInfo Class 30

DaServerMgt Class 33

ItemIdentifier Class 33

ItemResultCallback Class 34

ItemProperty Class 34

ItemValue Class 34

ItemValueCallback Class 35

QualityID Class 36

ResultID Class 37

UserIdentityToken Class 39

www.ptc.com

2

ClientAce

UserIdentityTokenCertificate Class 40

UserIdentityTokenIssuedToken Class 40

UserIdentityTokenUserPassword Class 40

BrowseFilter Enumeration 40

Property ID Enumeration 40

ServerState Enumeration 42

ReturnCode Enumeration 42

UserTokenType Enumeration 42

DaServerMgt Object 43

AccessRights Enumerated Values 43

DataChanged Event 44

ReadCompleted Event 46

ServerStateChanged Event 49

WriteCompleted Event 50

Browse Method 52

Connect Method 57

Disconnect Method 61

Get Properties Method 61

Read Method 63

ReadAsync Method 69

Subscribe Method 72

SubscriptionModify Method 75

SubscriptionAddItems Method 77

SubscriptionCancel Method 79

SubscriptionRemoveItems Method 80

Write Method 82

WriteAsync Method 87

IsConnected Property 89

ServerState Property 89

ClientAceDA_Junction 90

Project Setup 92

DA Junction Configuration Window 92

A Sample Project Using DA Junction with VB.NET or C# 97

Item Update Rate 107

Disabling DataChange While the Control Has Focus 109

Additional Controls 111

ItemBrowser Control Properties 111

Adding an ItemBrowser Control 116

www.ptc.com

3

ClientAce

OpcDaItem Class 120

NodeType Enumerated Values 121

ServerBrowser Control Properties 121

Adding a ServerBrowser Control 124

OPCType Enumerated Values 126

OPCUrl Class 127

KEPServerEX Controls 127

Adding a ChannelSetting Control 128

Adding a ServerState Control 132

Data Types Description 134

Applying ClientAce 136

Licensing ClientAce 136

Upgrading ClientAce 138

Signing a Client Application 138

Deploying a Client Application 140

Visual Studio 2003 and Visual Studio 2005 (.NET 2.0.0.x Assemblies) 140

Visual Studio 2008 (.NET 3.5.0.x Assemblies) 141

Visual Studio 2010, 2012, and 2013 (.NET 4.0.2.x Assemblies) 142

Troubleshooting 144

ASP .NET Development Incompatibility 144

CoInitializeSecurity 144

Converting Visual Studio 2008 to Visual Studio 2010 150

Microsoft Visual Studio Environment Configuration 150

Missing Controls 151

Referencing Controls 156

Removing Blank Toolbar Options after Uninstalling ClientAce (VS 2005) 156

Visual Studio 2008, 2010, 2012, and 2013 157

Appendix 158

Deconstructing the OPC Quality Field 158

UAC Self Elevation 160

Index 162

www.ptc.com

4

ClientAce

Help version 1.104

Contents

Overview
System and Application Requirements
ClientAce .NET API Assembly
ClientAceDA_Junction
Additional Controls
Data Types Description
Applying ClientAce
Troubleshooting
Appendix

ClientAce and KEPServerEX are trademarks of Kepware Technologies. Other company and product names
mentioned herein are the trademarks or registered trademarks of their respective owners.

© 2017 PTC Inc. All Rights Reserved.

Overview
ClientAce provides tools to help developers easily build an OPC client application. ClientAce consists of two
main parts: the .NET Application Programming Interface (API) and the DA Junction. Descriptions of the parts
are as follows:

l ClientAce .NET API: The ClientAce .NET API provides C# and Visual Basic .NET language users with a
simple, intuitive, and optimized class library to quickly develop OPC client applications for accessing
OPC servers. For more information, refer to ClientAce .NET API Assembly.

l ClientAceDA Junction: The ClientAce DA Junction is a customized .NET control that enables Visual
Basic .NET or C# programmers to develop OPC client applications that can access a variety of OPC
servers. No detailed knowledge of OPC Data Access (DA) interfaces is required. The DA Junction will
perform the connection handling procedure between the custom client application and the OPC
server, and will monitor and reconnect when necessary. For more information, refer to ClientAceDA_
Junction.

Note: When building advanced custom OPC client applications that require more control over OPC
functionality, the ClientAce .NET API is recommended.

Additional Controls
For more information on other controls that can be used in the Visual Studio Environment, refer to Additional

Controls.

www.ptc.com

5

ClientAce

System and Application Requirements
Software Requirements
Microsoft Windows operating system requirements are the same for both ClientAce and the Microsoft Visual
Studio development environment that is used to develop ClientAce applications. If the operating system's
requirements for the version of Visual Studio being used does not list the operating system intended for use,
then ClientAce is not supported for use on that operating system.

UAC on Windows Vista and Windows 7
To ensure that all components function correctly in the design environment, turn off UAC on the machines
being used to develop applications with ClientAce. UAC limits access to folders and files in the design
environment, which will affect some objects in the design environment. UAC does not affect these objects in
the Runtime environment.

Hardware Requirements
100 MB available disk space is required. For additional hardware requirements, refer to the Microsoft .NET
Framework documentation of the version that will be used in the Visual Studio project.

Microsoft Visual Studio Requirements
ClientAce currently supports the following versions of Microsoft Visual Studio:

l Visual Studio 2003 with the .NET 2.0 Framework (ClientAce Version 1.0)

l Visual Studio 2005 with the .NET 2.0 Framework (ClientAce Version 1.0)

l Visual Studio 2008 SP1 with the .NET 3.5 Framework (ClientAce Version 3.5)

l Visual Studio 2010 with the .NET 4.0/4.5 Framework (ClientAce Version 4.0)

l Visual Studio 2012 with the .NET 4.0/4.5 Framework (ClientAce Version 4.0)

l Visual Studio 2013 with the .NET 4.0/4.5 Framework (ClientAce Version 4.0)

For the installation to complete, the following Visual Studio Environment Settings are required:

l C Sharp (C#) must be installed.

l A default development environment must be configured for the current user.

Notes:

1. ASP.NET applications cannot be developed with ClientAce.

2. Only Windows Applications (EXEs) can be signed. If DLLs are created, the application must be signed.
The user running the sign process must have permissions to modify the application being signed."

Supported OPC Specifications
ClientAce supports functionality with the following OPC specifications:

l OPC DA 2.0

l OPC DA 2.05A

l OPC DA 3.0

l OPC Unified Architecture (UA)*

l OPC XML-DA

*ClientAce currently supports OPC UA for use with the OPC DA information model.

Note: Other OPC specifications are not supported at this time.

www.ptc.com

6

ClientAce

www.ptc.com

7

ClientAce

Runtime Requirements
.NET Framework Requirements
When deploying the custom client applications created using ClientAce, the .NET Framework requirements
depend on the version of Visual Studio that was used for development. For more information, refer to
Deploying Your Client Application.

Visual Studio 2010 C++ Runtime Redistributables
Part of the low-level OPC layer for ClientAce is written using C++ in Visual Studio 2010. It has a dependency
on the redistributables for that version. It is important that these files be present when deploying custom
client application created using ClientAce. The installer for the redistributables may be located in the
ClientAce Install folder.

OPC Foundation Core Redistributables
OPC DA client/server connectivity requires core OPC components, which are typically with an OPC server or
client. When deploying a custom client application created using ClientAce to a PC that has never had an
OPC server or client installed, the core components must be installed for it to work. The installer for the OPC
Foundation Core Redistributables may be located in the ClientAce Install folder.

www.ptc.com

8

ClientAce

ClientAce .NET API Assembly
Kepware's ClientAce .NET API provides developers working with the C# and Visual Basic .NET languages with
a simple, intuitive, and optimized class library to quickly develop OPC client applications for accessing OPC
servers. ClientAce provides the following:

l A simple, intuitive .NET interface that does not require knowledge of the different OPC DA, UA, and
XML-DA interfaces.

l An API that covers the different OPC base technologies (such as COM and DCOM). It also manages
the connection handling to multiple OPC Servers, including connection establishment, connection
monitoring, and reconnection after errors.

l Simple development of OPC Client applications with C# or Visual Basic .NET.

l Conversion of OPC data from different OPC DA, UA, and XML-DA interfaces into .NET data types.

l Fast searching for both local and remote OPC COM servers.

l High performance and optimized client/server communication through kernel functionality
(implemented in C++).

 For more information, refer to EndPointIdentifier Class and Kepware.ClientAce.OpcDaClient Namespace.

EndPointIdentifier Class
OPC UA servers require more connection information than traditional OPC servers do, especially for
secured connections. The EndPointIdentifer Class specifies secured connection information, such as server
certificates, the security policy, and the message security mode used for UA communication. Its values may
be entered manually or obtained through the OpcServerEnum.EnumComServer Method when a UA
discovery server is used or the OpcServerEnum.getEndpoints Method when receiving connection
information directly from the endpoint.

Property
Data
Type

Description

ApplicationName String The name of the application.

ApplicationUri String The URI of the application.

MessageSecurityMode Byte

The mode of method security. Possible message security mode values
are as follows:

None = 1
Sign = 2
SignAndEncrypt = 3

ProductUri String The product URI.

SecurityPolicyUri String

The URI of the security policy. Valid policy URI strings used for UA
communications are as follows:

http://opcfoundation.org/UA/SecurityPolicy#None
http://opcfoundation.org/UA/SecurityPolicy#Basic128Rsa15
http://opcfoundation.org/UA/SecurityPolicy#Basic256

ServerCertificate Byte[] The server certificate.

This class is similar to ServerIdentifer. For more information, refer to ServerIdentifier Class.

www.ptc.com

9

ClientAce

PkiCertificate Class
New Class Constructor With Eleven Overloads

New(
URI As String,
HostIP As String,
DNS As String,
timeValid As Integer,
commonName As String,
organization As String,
organizationUnit As String,
locality As String,
state As String,
country As String,
keyStrength as Integer

)

Properties
The PkiCertificate Class allows the creation and encapsulation of an X509 certificate, and provides methods
for loading and saving certificates through the WindowsCertificateStore. Once constructed, the certificate's
properties are Read Only.

Property Data Type Description

URI String
The ApplicationURI used to identify the application. It must be a
unique identifier like
"urn:<HostName>:<Company>:<ProductName>".

HostIP String
The IP Address of the host where the application is running.
This field will only be used if the host name is not available.

DNS String The name of the host where the application is running.

TimeValid Integer The certificate's validity time (in seconds).

CommonName String The certificate's display name.

Organization String The issuer's organization or company.

OrganizationUnit String The issuer's organization unit.

Locality String The issuer's location.

State String The state where the issuer is located.

Country String The country code (such as US or DE).

KeyStrength Integer The length of the key (such as 1024 bit or 2048 bit).

Example Code
[Visual Basic]
' Declare our Pki Certificate
Dim clientCertificate As Kepware.ClientAce.OpcCmn.PkiCertificate
' Create a new Pki Certificate with constructor
clientCertificate = New Kepware.ClientAce.OpcCmn.PkiCertificate(_
"OPCUA Sample Application:Kepware:OpcUaSampleApplication", _

www.ptc.com

10

ClientAce

"127.0.0.1", _
"", _
31536000, _
"CERT_TEST", _
"Kepware Technologies", _
"Development", _
"Portland", _
"Maine", _
"United States", _
1028)

' If a problem occurred we will receive a null certificate
if IsNothing(clientCertificate) Then
MsgBox("A problem occurred when attempting to create a certificate")
End If

[C#]
// Create a new Pki Certificate with constructor
PkiCertificate clientCert = new Kepware.ClientAce.OpcCmn.PkiCertificate(
"OPCUA Sample Application:Kepware:OpcUaSampleApplication",

"127.0.0.1",
"",
31536000,
"CERT_TEST",
"Kepware Technologies",
"Development",
"Portland",
"Maine",
"United States",
1028);

// If a problem occurred we will receive a null certificate
if (clientCert == null)
{
MessageBox.Show("A problem occurred when attempting to create a certificate");
}

toDER Method
Method

toDER() As/Returns Byte()

Properties
This method outputs a DER-encoded byte array that contains the PkiCertificate. This format is used in the
EndpointIndentifier and ConnectInfo classes.

Example Code
[Visual Basic]
' Declare our Application URI needed to search for the certificate
Dim URI As String = "OPCUA Sample Application:Kepware:OpcUaSampleApplication"

www.ptc.com

11

ClientAce

' Declare our ConnectInfo object
Dim connectInfo As Kepware.ClientAce.OpcDaClient.ConnectInfo = Nothing
' Declare our certificate
Dim clientCertificate As Kepware.ClientAce.OpcCmn.PkiCertificate
' Grab our certificate with private key from the Windows Certificate Store
clientCertificate = Kepware.ClientAce.OpcCmn.PkiCertificate.fromWindowsStoreWithPrivateKey
(Kepware.ClientAce.OpcCmn.WinStoreLocation.LocalMachine, _

"UA Applications", _
URI)

'Use the toDER method to pass the certificate to the connectInfo object
connectInfo.ClientCertificate = clientCertificate.toDER()

[C#]
// Declare our Application URI needed to search for the certificate
String URI = "OPCUA Sample Application:Kepware:OpcUaSampleApplication";
// Declare our ConnectInfo object
Kepware.ClientAce.OpcDaClient.ConnectInfo connectInfo = null;
// Declare our certificate
Kepware.ClientAce.OpcCmn.PkiCertificate clientCertificate = null;
// Grab our certificate with private key from the Windows Certificate Store
clientCertificate =
Kepware.ClientAce.OpcCmn.PkiCertificate.fromWindowsStoreWithPrivateKey
(Kepware.ClientAce.OpcCmn.WinStoreLocation.LocalMachine,

"UA Applications",
URI);

// Use the toDER method to pass the certificate to the connectInfo object
connectInfo.ClientCertificate = clientCertificate.toDER();

fromDER Method
Method

fromDER(
DERdata as byte()
) As/Returns Kepware.ClientAce.OpcCmn.PkiCertificate

Properties
This static method creates a PkiCertificate object from a DER-encoded byte array that contains a certificate.
If the fromDER Method fails, a certificate that contains properties as null strings will be returned.

Parameter Use Data Type Description

DERdata Input Byte[]
A DER-encoded byte array that contains a
certificate.

Example Code

[Visual Basic]
' Our DER encoded byte array containing our certificate

www.ptc.com

12

ClientAce

Dim DERdata() As Byte
' Creating a PKI Certificate from our DER encoded byte array
Dim certificate As Kepware.ClientAce.OpcCmn.PkiCertificate
certificate = Kepware.ClientAce.OpcCmn.PkiCertificate.fromDER(DERdata)

[C#]
// Our DER encoded byte array containing our certificate
Byte[] DERdata;
// Creating a PKI Certificate from our DER encoded byte array
Kepware.ClientAce.OpcCmn.PkiCertificate certificate;
certificate = Kepware.ClientAce.OpcCmn.PkiCertificate.fromDER(DERdata);

toWindowsStore Method
Method

toWindowsStore(
WindowsCertificateStore as Kepware.ClientAce.OpcCmn.WinStoreLocation,
storeName as String

)

Properties
This method exports the PkiCertificate to the WindowsCertificateStore without the Private Key.

Note: When a secure UA connection is needed, the Private Key must be supplied to the ConnectInfo
Object.

Parameter Use Data Type Description

WindowsCertificateStore Input Kepware.ClientAce.OpcCmn.WinStoreLocation

This specifies the
Windows Certificate
Store location where
the PkiCertificate
will be placed.

storeName Input String

This specifies the
folder name within
the Certificate Store
where the certificate
will be placed. Most
UA applications use
the store name "UA
Applications".

Note: Additional permissions and/or configuration may be necessary when specifying a Windows Store
Location besides "Current User" and "Local Computer".

Example Code

[Visual Basic]

www.ptc.com

13

ClientAce

' Create a certificate
Dim clientCertificate As New Kepware.ClientAce.OpcCmn.PkiCertificate(_
"OPCUA Sample Application:Kepware:OpcUaSampleApplication", _

"127.0.0.1", _
"", _
31536000, _
"ClientAce UA Sample Application", _
"Kepware Technologies", _
"Development", _
"Portland", _
"Maine", _
"United States", _
1028)

' Specify a Windows Store Location
Dim winStoreLocation As Kepware.ClientAce.OpcCmn.WinStoreLocation = _
Kepware.ClientAce.OpcCmn.WinStoreLocation.CurrentUser
' Specify a store name. Most UA applications will use the "UA Applications" location.
Dim storeName As String = "UA Applications"
' Export Certificate to the Windows Store
clientCertificate.toWindowsStore(winStoreLocation, storeName)

[C#]
// Create a certificate
Kepware.ClientAce.OpcCmn.PkiCertificate clientCertificate =
new Kepware.ClientAce.OpcCmn.PkiCertificate(
"OPCUA Sample Application:Kepware:OpcUaSampleApplication",

"127.0.0.1",
"",
31536000,
"ClientAce UA Sample Application",
"Kepware Technologies",
"Development",
"Portland",
"Maine",
"United States",
1028);

// Specify a Windows Store location
Kepware.ClientAce.OpcCmn.WinStoreLocation
winStoreLocation = Kepware.ClientAce.OpcCmn.WinStoreLocation.CurrentUser;
// Specify a store name. Most UA applications will use the "UA Applications" location.
string storeName = "UA Applications";
// Export Certificate to the Windows Store
clientCertificate.toWindowsStore(winStoreLocation, storeName);

www.ptc.com

14

ClientAce

toWindowsStoreWithPrivateKey Method
Method

toWindowsStoreWithPrivateKey(
WindowsCertificateStore as Kepware.ClientAce.OpcCmn.WinStoreLocation,
storeName as String

)

Properties
This method exports the PkiCertificate (including the Private Key) to the WindowsCertificateStore.

Parameter Use Data Type Functionality

WindowsCertificateStore Input Kepware.ClientAce.OpcCmn.WinStoreLocation

This specifies
the Windows
Certificate
Store location
where the
PkiCertificate
will be placed.

storeName Input String

This specifies
the folder
name within
the Certificate
Store where
the certificate
will be placed.
Most UA
applications
use the store
name "UA
Applications".

Note: Additional permissions and/or configuration may be necessary when specifying a Windows Store
Location besides "Current User" and "Local Computer".

Example Code

[Visual Basic]
' Create a certificate
Dim clientCertificate As New Kepware.ClientAce.OpcCmn.PkiCertificate(_
"OPCUA Sample Application:Kepware:OpcUaSampleApplication", _

"127.0.0.1", _
"", _
31536000, _
"ClientAce UA Sample Application", _
"Kepware Technologies", _
"Development", _
"Portland", _

www.ptc.com

15

ClientAce

"Maine", _
"United States", _
1028)

' Specify a Windows Store Location
Dim winStoreLocation As Kepware.ClientAce.OpcCmn.WinStoreLocation = _
Kepware.ClientAce.OpcCmn.WinStoreLocation.CurrentUser
' Specify a store name. Most UA applications will use the "UA Applications" location.
Dim storeName As String = "UA Applications"
' Export Certificate to the Windows Store
clientCertificate.toWindowsStoreWithPrivateKey(winStoreLocation, storeName)

[C#]
// Create a certificate
Kepware.ClientAce.OpcCmn.PkiCertificate clientCertificate =
new Kepware.ClientAce.OpcCmn.PkiCertificate(
"OPCUA Sample Application:Kepware:OpcUaSampleApplication",

"127.0.0.1",
"",
31536000,
"ClientAce UA Sample Application",
"Kepware Technologies",
"Development",
"Portland",
"Maine",
"United States",
1028);

// Specify a Windows Store location
Kepware.ClientAce.OpcCmn.WinStoreLocation
winStoreLocation = Kepware.ClientAce.OpcCmn.WinStoreLocation.CurrentUser;
// Specify a store name. Most UA applications will use the "UA Applications" location.
string storeName = "UA Applications";
// Export Certificate to the Windows Store
clientCertificate.toWindowsStoreWithPrivateKey (winStoreLocation, storeName);

fromWindowsStore Method
Method

fromWindowsStore(
winStoreLocation as Kepware.ClientAce.OpcCmn.WinStoreLocation,
storeName as String,
thumbprint as Byte[]

) As/returns Kepware.ClientAce.OpcCmn.PkiCertificate

Properties

www.ptc.com

16

ClientAce

This method retrieves a certificate from a specific location within the Windows Certificate Store by
referencing its thumbprint.

Note: When a secure UA connection is needed, the Private Key must be supplied to the ConnectInfo
Object. The fromWindowsStoreWithPrivateKey Method is recommended when there are no other private key
storage/retrieval methods being used within the client application. For more information, refer to
fromWindowsStoreWithPrivateKey Method.

Parameter Use Data Type Description

WindowsCertificateStore Input Kepware.ClientAce.OpcCmn.WinStoreLocation

This specifies
the Windows
Certificate
Store location
where the
PkiCertificate
will be found.

storeName Input String

This specifies
the folder
name within
the Certificate
Store where
this certificate
will be found.
Most UA
applications
use the store
name "UA
Applications".

thumbprint Input Byte[]

This is an
attribute of an
X509
certificate that
can be copied
directly from
the Certificate
Properties
within the
Windows MMC
Certificate
snap-in.

Example Code
[Visual Basic]
Private Function RetrieveCertificateFromStore(ByRef thumbprint() As Byte)
' Declare a certificate for our return value
Dim certificate As Kepware.ClientAce.OpcCmn.PkiCertificate
' Specify a Windows Store Location
Dim winStoreLocation As Kepware.ClientAce.OpcCmn.WinStoreLocation = _
Kepware.ClientAce.OpcCmn.WinStoreLocation.CurrentUser

www.ptc.com

17

ClientAce

' Specify a store name. Most UA applications will use the "UA Applications" location.
Dim storeName As String = "UA Applications"
Try
' Retrieve the certificate form the windows store
certificate = Kepware.ClientAce.OpcCmn.PkiCertificate.fromWindowsStore(_

winStoreLocation, _
storeName, _
thumbprint)

' Return the certificate from the function
Return certificate
Catch ex As Exception
MsgBox("A handled exception was caught when attempting to retrieve the certificate Form the
WindowsFormsSection store: " _

& ex.ToString())
' If an exception occurred, return nothing
Return Nothing
End Try
End Function

[C#]
private PkiCertificate retrieveCertificateFromStore(byte[] thumbprint)
{
// Declare a certificate for our return value
PkiCertificate certificate;
// Specify a Windows Store location
Kepware.ClientAce.OpcCmn.WinStoreLocation
winStoreLocation = Kepware.ClientAce.OpcCmn.WinStoreLocation.CurrentUser;
// Specify a store name. Most UA applications will use the "UA Applications" location.
string storeName = "UA Applications";
try
{
// Retrieve the certificate form the windows store
certificate = PkiCertificate.fromWindowsStore(winStoreLocation,
storeName,
thumbprint);
// Return the certificate
return certificate;
}
catch (Exception ex)
{
MessageBox.Show("A handled exception was caught when attempting to retrieve the certificate
Form the WindowsFormsSection store: "

+ ex.ToString());
// If an exception occurred, return null
return null;
}
}

www.ptc.com

18

ClientAce

fromWindowsStoreWithPrivateKey Method
Method One

fromWindowsStoreWithPrivateKey(
winStoreLocation as Kepware.ClientAce.OpcCmn.WinStoreLocation,
storeName as String,
thumbprint as Byte[]

) As/returns Kepware.ClientAce.OpcCmn.PkiCertificate

Method Two
fromWindowsStoreWithPrivateKey(

winStoreLocation as Kepware.ClientAce.OpcCmn.WinStoreLocation,
storeName as String,
applicationURI as String

) As/returns Kepware.ClientAce.OpcCmn.PkiCertificate

Properties
This method retrieves a certificate with the private key from a specific location within the Windows
Certificate Store by referencing the certificate's thumbprint or application URI.

Parameter Use Data Type Description

WindowsCertificateStore Input Kepware.ClientAce.OpcCmn.WinStoreLocation

This specifies
the Windows
Certificate
Store location
where the
PkiCertificate
will be found.

storeName Input String

This specifies
the folder
name within
the Certificate
Store where
the certificate
will be found.
Most UA
applications
use the store
name "UA
Applications".

thumbprint Input-1 Byte[]

This is an
attribute of an
X509
certificate that
can be copied
directly from
the Certificate
Properties

www.ptc.com

19

ClientAce

within the
Windows MMC
Certificate
snap-in.

applicationURI Input-2 String

If desired, a
string that
contains the
application URI
can be used
instead of the
thumbprint to
retrieve the
certificate from
the Windows
store.

Example Code
[Visual Basic]
Private Function RetrieveCertificateFromStore(ByRef thumbprint() As Byte)
' Declare a certificate for our return value
Dim certificate As Kepware.ClientAce.OpcCmn.PkiCertificate
' Specify a Windows Store Location
Dim winStoreLocation As Kepware.ClientAce.OpcCmn.WinStoreLocation = _
Kepware.ClientAce.OpcCmn.WinStoreLocation.CurrentUser
' Specify a store name. Most UA applications will use the "UA Applications" location.
Dim storeName As String = "UA Applications"
Try
' Retrieve the certificate form the windows store
certificate = Kepware.ClientAce.OpcCmn.PkiCertificate.fromWindowsStoreWithPrivateKey (_

winStoreLocation, _
storeName, _
thumbprint)

' Return the certificate from the function
Return certificate
Catch ex As Exception
MsgBox("A handled exception was caught when attempting to retrieve the certificate Form the
WindowsFormsSection store: " _

& ex.ToString())
' If an exception occurred, return nothing
Return Nothing
End Try
End Function

[C#]
private PkiCertificate retrieveCertificateFromStore(byte[] thumbprint)
{
// Declare a certificate for our return value
PkiCertificate certificate;

www.ptc.com

20

ClientAce

// Specify a Windows Store location
Kepware.ClientAce.OpcCmn.WinStoreLocation
winStoreLocation = Kepware.ClientAce.OpcCmn.WinStoreLocation.CurrentUser;
// Specify a store name. Most UA applications will use the "UA Applications" location.
string storeName = "UA Applications";
try
{
// Retrieve the certificate form the windows store
certificate = PkiCertificate.fromWindowsStoreWithPrivateKey(winStoreLocation,
storeName,
thumbprint);
// Return the certificate
return certificate;
}
catch (Exception ex)
{
MessageBox.Show("A handled exception was caught when attempting to retrieve the certificate
Form the WindowsFormsSection store: "

+ ex.ToString());
// If an exception occurred, return null
return null;
}
}

ServerIdentifier Class
The ServerIdentifier class is used to instance the server identifiers that are used by the DAServerObject for
OPC connections.

New Class Constructor With No Overloads
New()

New Class Constructor With Two Overloads
New(

url As String,
endpoint As Kepware.ClientAce.OpcCmn.EndpointIdentifier

)

New Class Constructor With Four Overloads
New(

nodeName As String,
progId As String,
clsid As String,
category As Kepware.ClientAce.OpcCmn.ServerCategory

)

Properties

www.ptc.com

21

ClientAce

ServerIdentifier objects are returned by the EnumComServers Method and contain information that
describe the OPC servers installed on the specified machine.

Property Data Type Description

Category ServerCategory Server category.*

CLSID String The Class ID of the OPC server.

Endpoint EndpointIdenifier The Kepware.ClientAce.OpcCmn Endpoint Identifier.**

HostName String
The name or IP address of the OPC server's host machine (such as
localhost, PCTest, 192.168.0.120, and so forth). If this parameter is left
unassigned, the local host is assumed.

ProgID String The Program ID of the OPC server.

URL String The URL of the server, formatted for use in Connect Method.

*For more information, refer to ServerCategory Enumeration.
**For more information, refer to EndpointIdentifier Class.

ServerCategory Enumeration
The ServerCategory enumerator is used to specify the type of OPC server.

Name Value Description

OPCAE 2 Server supports OPC AE 1.10 (Alarms and Events).

OPCDA 0 Server supports OPC DA 2.0, 2.05A, and 3.0 (Data Access).

OPCDX 1 Server supports OPC DX 1.00 (Data Exchange).

OPCHDA 3 Server supports OPC HDA 1.10 (Historical Data Access).

OPCUA 5 Server supports OPC UA 1.01 (Unified Architecture).

OPCXMLDA 4 Server supports OPC XMLDA 1.01 (XML Data Access).

Note: Because OPC XML-DA servers are not registered like COM OPC servers, they cannot be found using
the OpcServerEnum object. To connect to an OPC XML-DA server, the URL must be known.

WinStoreLocation Enumeration
The WinStoreLocation enumerator is an enumerated object that specifies WinStoreLocation values.

Name Value Description

CurrentService 262144 The object's current service.

CurrentUser 65536 The object's current user.

LocalMachine 131072 The object's local machine.

Services 327680 The object's services.

Users 393216 The object's users.

OpcServerEnum Object
The Kepware.ClientAce.OpcCmn.OpcServerEnum object enumerates the OPC servers installed on a given
machine. It also determines the CLSID from an OPC server's ProgID.

www.ptc.com

22

ClientAce

Creating OpcServerEnum Object
Before using the OpcServerEnum Class, an instance of the class must be created.

[Visual Basic]
Dim opcServerEnum As New Kepware.ClientAce.OpcCmn.OpcServerEnum

[C#]
OpcServerEnum opcServerEnum = new
Kepware.ClientAce.OpcCmn.OpcServerEnum ();

ClsidFromProgID Method
Method

ClsidFromProgId (
ByVal nodeName As String,
ByVal progID As String,
ByRef clsid As String

)

Properties
The ClsidFromProgID Method is used to obtain an OPC server's Class ID from its Program ID. The server's
host machine must be accessible from the client.

Note: This function is not needed to connect to UA servers.

Parameter Use Functionality

nodeName Input
The name or IP address of the OPC Server's host machine (such as localhost,
PCTest, 192.168.0.120, and so forth). If this parameter is left unassigned, the local
host is assumed.

progID Input The Program ID of the OPC server.

clsid Output The returned Class ID of the OPC server.

Example Code
[Visual Basic]
' Declare variables
Dim opcServerEnum As Kepware.ClientAce.OpcCmn.OpcServerEnum = Nothing
Dim nodeName As String = "localhost"
Dim progId As String = "KEPware.KEPServerEx.V5"
Dim clsid As String = Nothing
Try
' Call ClsidFromProgId API method
opcServerEnum.ClsidFromProgId(nodeName, progId, clsid)
' Handle result
Console.WriteLine("CLSID: " & clsid)
Catch ex As Exception
Console.WriteLine("ClsidFromProgID exception. Reason: " & _
ex.Message)

www.ptc.com

23

ClientAce

End Try

[C#]
// Declare variables
OpcServerEnum opcEnum = new OpcServerEnum();
string nodeName = "localhost";
string progId = "KEPware.KEPServerEx.V5";
string clsid;
try
{
// Call ClsidFromProgId API method
opcEnum.ClsidFromProgId(nodeName, progId, out clsid);
// Handle result
Console.WriteLine("CLSID: {0}", clsid);
}
catch (Exception ex)
{
Console.WriteLine("ClsidFromProgId exception. Reason: {0}", ex);
}

EnumComServer Method
Method

EnumComServer (
ByVal nodeName As String,
ByVal returnAllServers As Boolean,
ByVal serverCategories() As Kepware.ClientAce.OpcCmn.ServerCategory,
ByRef servers() As Kepware.ClientAce.OpcCmn.ServerIdentifier

)

Properties
The EnumComServer Method is used to determine the OPC servers that are accessible to a ClientAce
application. These servers can exist on the same computer as the client application, or on any machine
accessible on the network. The results can be filtered according to OPC server category. For more
information, refer to ServerCategory Enumeration.

Parameter Use Functionality

nodeName Input
The name or IP address of the OPC server's host machine (such as localhost,
PCTest, 192.168.0.120, and so forth). If this parameter is left unassigned, the
local host is assumed.

returnAllServers Input
This flag decides whether to return all OPC Servers found on a particular
machine. If this parameter is set to true, the array serverCategories will be
ignored.

serverCategories Input This parameter specifies the types of OPC servers that should be returned.*

servers Output This parameter specifies the OPC servers that should be returned.

*See Also: ServerCategory Enumeration.

www.ptc.com

24

ClientAce

Example Code
These examples browse for all OPCDA servers installed on localhost.

[Visual Basic]
' Declare parameters
Dim opcEnum As Kepware.ClientAce.OpcCmn.OpcServerEnum = Nothing
Dim nodeName As String = "localhost"
Dim returnAllServers As Boolean = False
Dim serverCatagories(0) As Kepware.ClientAce.OpcCmn.ServerCategory
serverCatagories(0) = New Kepware.ClientAce.OpcCmn.ServerCategory
serverCatagories(0) = Kepware.ClientAce.OpcCmn.ServerCategory.OPCDA
Dim servers() As Kepware.ClientAce.OpcCmn.ServerIdentifier = Nothing
Try
' Call EnumComServer API method
opcEnum.EnumComServer(_
nodeName, _
returnAllServers, _
serverCatagories, _
servers)
' Handle results
Dim server As Kepware.ClientAce.OpcCmn.ServerIdentifier
For Each server In servers
Dim progID As String = server.ProgID
Dim url As String = server.Url
Console.WriteLine("ProgID: " & progID & " url: " & url)
Next
Catch ex As Exception
Console.WriteLine("Handled EnumComServer exception. Reason: " _
& ex.Message)
End Try

[C#]
// Declare parameters
string nodeName = "localhost";
bool returnAllServers = false;
OpcServerEnum opcEnum = new OpcServerEnum();
ServerCategory[] serverCategories = new ServerCategory[1];
serverCategories[0] = new ServerCategory();
serverCategories[0] = ServerCategory.OPCDA;
ServerIdentifier[] servers;
try
{
// Call EnumComServer API method
opcEnum.EnumComServer(nodeName, returnAllServers, serverCategories, out servers);
// Handle results
foreach (ServerIdentifier server in servers)
{
string progID = server.ProgID;

www.ptc.com

25

ClientAce

string url = server.Url;
Console.WriteLine("ProgID: {0} url: {1}", progID, url);
}
}
catch (Exception ex)
{
Console.WriteLine("EnumComServer exception. Reason: {0}", ex);
}

getCertificateForEndpoint Method
Method

getCertificateForEndpoint(_
endpointUrl As String, _
securityPolicyUri As String, _
messageSecurityMode As Byte, _
ByRef serverCertificate() As Byte _

)

Properties
The getCertificateForEndpoint Method retrieves the certificates for a specified OPC UA Server EndPoint.

Parameter Use
Data
Type

Description

endpointUrl Input String The URL of the Endpoint.

securityPolicyUri Input String

The URI of the security policy. Valid policy URI strings used
for UA communications are as follows:

http://opcfoundation.org/UA/SecurityPolicy#None
http://opcfoundation.org/UA/SecurityPolicy#Basic128Rsa15
http://opcfoundation.org/UA/SecurityPolicy#Basic256

messageSecurityMode Input Byte

The mode of message security. Possible message security
mode values are as follows:

None = 1
Sign = 2
SignAndEncrypt = 3

serverCertificate Output Byte The ByRef server certificate.

Example Code
[VB]
' Create a new OPC Server Enum object to call the getCertificateForEndpoint method
Dim opcEnum As Kepware.ClientAce.OpcCmn.OpcServerEnum = _
New Kepware.ClientAce.OpcCmn.OpcServerEnum
' Specify a server endpoint
Dim endpointURL As String = "opc.tcp://localhost:49320"
' Specify a security policy URI

www.ptc.com

26

ClientAce

Dim securityPolicyURI As String = "http://opcfoundation.org/UA/SecurityPolicy#None"
' Specify a message Security Mode
Dim messageSecurityMode As Byte = 1
' Create a byte array which will contain our returned certificate
Dim serverCertificate() As Byte = Nothing
Try
' Make the method call
opcEnum.getCertificateForEndpoint(endpointURL, securityPolicyURI, messageSecurityMode,
serverCertificate)
Catch ex As Exception
MsgBox("An error occurred when attempting to retrieve the certificate from the following
endpoint: " _
& endpointURL _
& ex.ToString())
End Try

[C#]
// Create a new OPC Server Enum object to call the getCertificateForEndpoint method
Kepware.ClientAce.OpcCmn.OpcServerEnum opcEnum =
new Kepware.ClientAce.OpcCmn.OpcServerEnum();
// Specify a server endpoint
string endpointURL = "opc.tcp://localhost:49320";
// specify a security policy URI
string securityPolicyURI = "http://opcfoundation.org/UA/SecurityPolicy#None";
// Specify a message security mode
byte messageSecurityMode = 1;
// Create a byte array which will contain our returned certificate
byte[] serverCertificate;
try
{
// Make the method call
opcEnum.getCertificateForEndpoint(endpointURL,
securityPolicyURI,
messageSecurityMode,
out serverCertificate);
}
catch(Exception ex)
{
MessageBox.Show("An error occurred when attempting to retrieve the certificate from the
following endpoint: "
+ endpointURL
+ ex.ToString());
}

www.ptc.com

27

ClientAce

getEndpoints Method
Method

getEndpoints(
discoveryURL as string,
endpoints() as Kepware.ClientAce.OpcCmn.EndpointIdentifier
)

Properties
The getEndpoints Method is used to retrieve connection information from an OPC UA server when an OPC
UA Discovery Server is not installed on the remote machine. Because port numbers can vary widely,
searching for OPC UA endpoints may be very communication-intensive. As such, it should not be done using
standard server enumeration methods like EnumComServer(). If an OPC Discovery Server is installed and
running on the remote machine, the EnumComServer Method will return any OPC servers residing on the
remote machine, including all OPC UA endpoints. Otherwise, the getEndpoints Method will allow the client to
retrieve UA-specific connection information.

Note: When using the getEndpoints Method, the Endpoint URL must contain the OPC UA server's full
address, including the port number. For example, "opc.tcp://[IP Address]:[Port]" and
"opc.tcp://localhost:49320".

Parameter Use Functionality

discoveryURL Input This specifies the OPC UA server's address.

endpoints() Input/Output
This array of EndpointIdentifiers returns information from any
UA server.

Example Code
The examples below show how to retrieve pertinent connection information for a remote OPC UA server.

[Visual Basic]
'Declare our serverEnum object instance
Dim opcServerEnum As New Kepware.ClientAce.OpcCmn.OpcServerEnum()
'Create an array of endpoint identifiers for our return values
Dim endpoints(0) As Kepware.ClientAce.OpcCmn.EndpointIdentifier
endpoints(0) = New Kepware.ClientAce.OpcCmn.EndpointIdentifier()
'Specify a valid OPC UA endpoint URL
Dim discoveryURL As String = "opc.tcp://localhost:49320"
Try
'Make the method call
opcServerEnum.getEndpoints(discoveryURL, endpoints)
Catch ex As Exception
MsgBox("An error occurred when attempting to retrieve endpoint information" _
& ex.ToString())
End Try

[C#]
//Declare our serverEnum object instance
Kepware.ClientAce.OpcCmn.OpcServerEnum opcServerEnum =

www.ptc.com

28

ClientAce

new Kepware.ClientAce.OpcCmn.OpcServerEnum();
//Create an array of endpoint identifiers for our return values
Kepware.ClientAce.OpcCmn.EndpointIdentifier[] endpoints =
new Kepware.ClientAce.OpcCmn.EndpointIdentifier[0];
//Specify a valid OPC UA endpoint URL
string discoveryURL = "opc.tcp://localhost:49320";
try
{
//Make the method call
opcServerEnum.getEndpoints(discoveryURL, out endpoints);
}
catch (Exception ex)
{
System.Windows.Forms.MessageBox.Show(
"An error occurred when attempting to retrieve endpoint information" +
ex.ToString());
}

Kepware.ClientAce.OpcDaClient Namespace
The DaServerMgt Object provides the following features in the Kepware.ClientAce.OpcDaClient namespace:

l OPC Server Connection: The Connect Method is used to connect to the OPC Server; the Disconnect
Method is used to release the connection. Because the connection is monitored by ClientAce, the
client will be notified of any changes in connection status through ServerStateChanged Events.

l Data Change Notification: To avoid cyclic reading, ClientAce API provides tools that notify the client
of changes in values. Items can be registered for monitoring through the Subscribe Method,
subscriptions can be canceled through the SubscriptionCancel Method, and notifications of changed
values are made by the DataChanged Event.
Note: Items can be added or removed from a subscription at any time through the

SubscriptionAddItems and SubscriptionRemoveItems Methods. Subscription properties can also be
changed at any time through the SubscriptionModify Method.

l OPC Data Access Items Read / Write: The OPC items' values can be changed using the
asynchronous WriteAsync and synchronous Write Methods. When subscription is not appropriate, the
values can be obtained through the asynchronous ReadAsync and synchronous Read Methods.

l Information on the Address Space: The address space Browse Method can be used to search for
OPC items. The GetProperties Method can be used to obtain the properties of OPC items.

For more information, select a link from the list below.

BrowseElement Class
ConnectInfo Class
DaServerMgt Class
ItemIdentifier Class
ItemResultCallback Class
ItemProperty Class
ItemValue Class
ItemValueCallback Class
QualityID Class

www.ptc.com

29

ClientAce

ResultID Class
UserIdentityToken Class
UserIdentityTokenCertificate Class
UserIdentityTokenIssuedToken Class
UserIdentityTokenUserPassword Class
BrowseFilter Enumeration
Property ID Enumeration
ServerState Enumeration
ReturnCode Enumeration
UserTokenType Enumeration

BrowseElement Class
The BrowseElement Class contains all the information that was obtained by using the Browse method.

Property Data Type Description

HasChildren Boolean
This will be true if the element has child elements in the
address space; otherwise, it will be false.

IsItem Boolean
This will be true if the element is an OPC Data Access item;
otherwise, it will be false.

ItemName String The item name of the element.

ItemPath String The item path of the element.

ItemProperties ItemProperties
The properties of the element that were available through the
Browse Method.

Name String
The name of the returned element. This name is generally
used for displaying the address space in a tree or other
structured format.

ConnectInfo Class
Constructor

ConnectInfo(
localID As String,
retryInitialConnection As Boolean,
retryAfterConnectionError As Boolean,
keepAliveTime As Integer

)

Properties
A ConnectInfo object is used to pass connection related options to the API. This information determines how
the API will monitor and maintain connections, and will also provide language-dependent strings.

For more information, refer to WinStoreLocation Enumeration.

Property Data Type Description

BrowserInterface Integer 0 = Default. When selected, the default browse

www.ptc.com

30

ClientAce

functionality is used. For a COM OPC Data Access
server that supports DA2 and DA3 browsing, the
DA3 browse interface is used.

1 = ComDA2. When selected, the COM OPC Data
Access 2 browse interface is used if available.

2 = ComDA3. When selected, the COM OPC Data
Access 3 browse interface is used if available.

CertificateStoreLocation
WinStoreLocati-
on

The location of the certificate store.

CertificateStoreName String The name of the certificate store.

ClientCertificate Byte[] The client certificate.

ClientName String The user-defined name of the client.

ClientPrivacyKey Byte[] The client's privacy key.

DefaultNamespaceUri String

This specifies a default Namespace URI for OPC UA
Communications and gives users the ability to
eliminate the "ns=[namespace];s=" prefix used to
address OPC Items within the UA address space.*

DisableCacheReadForActiveRWG-
roup

Boolean

When ForceActiveRWGroup and
DisableCacheReadForActiveRWGroup are set, the
read is from CACHE if MaxAge is greater than the
UpdateRate of the ReadWrite group. Default is False.

DoAdviseActiveRWGroup Boolean

This property is set to advise the Read/Write Group
of changes. This allows the Asynchronous Reads and
Writes to complete when the ForceActiveRWGroup
flag is set.

DoServerCertificateVerify Boolean

If this flag is set, the API tries to validate the server
certificate when connecting with security. If the
application handles the certificate management, this
flag can be set to False to disable the check.

ForceActiveRWGroup Boolean

Add the Read/Write group as Active and actively poll
the added items to update the cache. Setting this
property forces OPC 2.0 reads from CACHE,
ignoring the MaxAge setting. Default is False.

KeepAliveTime Integer

During Runtime, the API continuously checks the
availability of the connection to the server.
KeepAliveTime represents the time interval (in
milliseconds) at which this availability check takes
place. The default value is 10,000 ms. The API
begins reconnection attempts at an interval of two
times the KeepAliveTime and incremented by 1
KeepAliveTime up to 10 times KeepAliveTime if the
server is not available for a longer time period. The
reconnect interval after a shutdown event from the
OPC server is one minute.

www.ptc.com

31

ClientAce

For example, if KeepAliveTime = 10,000
milliseconds, the first reconnect attempt is 20
seconds after check-fail; the second reconnect
attempt is 30 seconds after the first; the third
reconnect attempt is 40 seconds after the second,
and so on up to 100 seconds. From that point on,
retries continue every 100 seconds.

LocalID String

Using LocalID allows a country abbreviation (en-us,
en, and so forth) to be passed to the server. When
the LocalID is set, the language-dependent return
values are returned in the selected language (if
supported by the OPC server). If the value cannot be
found, the default value is passed to the server.

MessageSecurityMode Byte

The mode of message security.
1 = None
2 = Sign
3 = SignAndEncrypt

RetryAfterConnectionError Boolean

If this flag is set, the API attempts to reconnect after
a connection loss until the reconnect succeeds. If the
connection can be re-established, all handles that
were created before the connection loss are valid
again. Event handler methods do not have to be re-
registered.

RetryInitialConnection Boolean
If this flag is set to true, the API tries to connect to
the server even when the first connect did not
succeed.

RWGroupUpdateRate UInteger
Sets the update rate for the Read/Write group.
Default is 2000 milliseconds.

SecurityPolicyURI Sting

The URI of the security policy.

http://opcfoundation.org/UA/SecurityPolicy#None
http://opcfoundation.org/UA/SecurityPolicy#Basic12-
8Rsa15
http://opcfoundation.org/UA/SecurityPolicy#Basic25-
6

ServerCertificate Byte[] The server's certificate.

UACallTimeout Integer

The timeout used for each UA Service call. This is
the amount of time the UA interface waits for a
response from the server. Default is 10000
milliseconds.

UserIdentity
UserTokenTyp-
e

This defines the type of user authentication for the
connection.**

*The DefaultNamespaceUri for KEPServerEX version 5 is "KEPServerEX". The Namespace URIs can be found
within the Server Namespace Array when browsing the server's address space.
**For more information, refer to UserTokenType Enumeration.

www.ptc.com

32

ClientAce

Note: Changes in the connection status should be monitored using a ServerStateChanged event handler.
Connect is the only method in the DaServerMgt namespace that can be called prior to establishing a
connection. This can be tested at any time with the IsConnected Property.

DaServerMgt Class
The DaServerMgt Class allows access to an OPC Data Access Server. For a more information on the
ClientAce API and its methods, refer to DaServerMgt Object.

ItemIdentifier Class
The ItemIdentifier Class is a required parameter of the following methods:

l GetProperties

l Read

l ReadAsync

l Subscribe

l SubscriptionAddItems

l SubscriptionRemoveItems

l Write

l WriteAsync

ItemIdentifier objects are used to identify OPC items within a server. These objects are passed by reference
(in/out) in all method calls so that ClientAce may update the properties described below.

Property Data Type Description

ClientHandle Object

ClientAce will reference items in DataChanged, ReadCompleted,
and WriteCompleted events by their ClientHandle. A handle can
be assigned to access the data storage object for the item. This
storage object could be a TextBox control on the GUI or an
instance of a custom class defined in the application.

DataType System.Type

When an ItemItentifier object is first used, the property may
specify the data type as which the item value will be received. If
the server cannot provide the requested type for this item,
ClientAce will indicate this through the ResultID and reset this
property to the item's Native or canonical (default) data type. If
this property is left unspecified, ClientAce will reset it using the
item's canonical (default) data type.

ItemName String
This property contains the name (ItemID) of an OPC Data Access
item.

ItemPath String Reserved for future use.

ResultID ResultID

Whenever an item-specific error occurs during and OPC call (such
as unknown ItemName, trying to write to a Read Only item,
unsupported data type, and so forth), the error code provided by
the server will be placed in the ResultID object for the associated
ItemIdentifier. ClientAce will provide additional descriptive
information for the error. If a ClientAce API call returns a
ReturnCode indicating an error, the ResultID of all ItemIdentifiers
passed to the method should be examined to see which items
failed and why.

www.ptc.com

33

ClientAce

ServerHandle Integer
The API will set this value when the ItemIdentifier is first used. The
API can use the ServerHandle to optimize future calls to the OPC
server.

ItemResultCallback Class
The ItemResultCallback Class is used in the WriteCompleted event.

Property
Data
Type

Description

ClientHandle Object
This is the client handle of the item specified in the call to WriteAsync. The
client uses this handle to access the appropriate storage object for the
received data.

ResultID ResultID*

The class ResultID provides the error code (int), the name (string) and a
language-dependent description (string) for the item represented by the
ClientHandle. Thus, certain activities can be programmed to react on
occurring errors. It is also possible to display the error on the user interface
(message box).

*For more information, refer to ResultID Class.

ItemProperty Class
ItemProperty objects are used to describe a single property of an OPC item.

Property Data Type Description

DataType System.Type The data type of the property value.

Description String
The description of the property. This information can be used when
displaying the property in a graphical user interface (such as in a Grid
Control or a ToolTip).

ItemName String
The item name of the property (if the OPC server allows properties to be
read from and written to an item).

ItemPath String
The item path of the property (if the OPC server allows properties to be read
from and written to an item).

PropertyID Integer The identification number of the property.

ResultID ResultID*
If an error occurred while obtaining the properties, the dedicated error code
will be returned within this object.

Value Object The value of the property.

*For more information, refer to ResultID Class.

ItemValue Class
The ItemValue Class contains an OPC item's value, quality, and timestamp. It is used in the following
methods:

l Read: This method takes an array of ItemValue objects as an output parameter. The API will allocate
and fill the array with the requested item values during the read.

www.ptc.com

34

ClientAce

l Write: This method takes an array of ItemValue objects as an input parameter. This array must be
filled with the values that will be written to the items specified in the corresponding array of
ItemIdentifier objects.

l WriteAsync: This method takes an array of ItemValue objects as an input parameter. This array must
be filled with the values that will be written to the items specified in the corresponding array of
ItemIdentifier objects.

Property
Data
Type

Description

Quality QualityID*
The OPC quality of the associated Value. The class QualityID provides the
quality code (int), the name (string), and the description (string). It is Read Only,
and will be set by the API during reads.

Timestamp Date
The timestamp of the associated Value. It is Read Only, and will be set by the
API during reads.

Value Object
The value of the item. As an object, it can contain any data type. The value is
generally the same type as requested by the corresponding ItemIdentifier. If no
type was specified, the value will be provided in its canonical form.

*For more information, refer to QualityID Class.

ItemValueCallback Class
ItemValueCallback is derived from the ItemValue Class and is used in DataChanged and ReadCompleted
events.

Property
Data
Type

Description

ClientHandle Object
The client handle of the item specified in the call to Subscribe or ReadAsync.
The client uses this handle to access the appropriate storage object for the
received data.

Quality QualityID*

The quality associated with the value when it was acquired from the data
source. The class QualityID provides the quality code (int), the name (string),
and the description (string). It is Read Only, and will be set by the API during
reads.

ResultID ResultID**

The class ResultID provides the error code (int), the name (string), and a
language-dependent description (string) for the item represented by the
ClientHandle. Certain activity can be programmed to react on eventually
occurring errors. It is also possible to display the error on the user interface
(message box).

Timestamp Date
The timestamp of the associated Value. It is Read Only, and will be set by the
API during reads.

Value Object
The value of the item. As an object, it can contain any data type. The value is
generally the same type as requested by the corresponding ItemIdentifier. If
no type was specified, the value will be provided in its canonical form.

*For more information, refer to QualityID Class.
**For more information, refer to ResultID Class.

www.ptc.com

35

ClientAce

Tip: Quality, Timestamp, and Value are shared from the base class.

QualityID Class
A QualityID object is used to describe the OPC quality of an item's value.

Property
Data
Type

Description

Description String The description of the quality code. The language depends on the locale.

FullCode Integer The full code sent by the server.

IsGood Boolean
This property will be True if the value has "good" quality. If False, detailed
information about the quality of the value can be determined from the other
properties.

LimitBits Integer

The limit portion of the code sent by the server.*

0 = The value is free to move up or down.
1 = The value has "pegged" at some lower limit.
2 = The value has "pegged" at some high limit.
3 = The value is constant and cannot move.

Name String String representation of the code.*

Quality Integer Code that indicates the quality of the value sent by the server.*

VendorBits Integer Vendor-specific data within the code.*

*For more information on OPC Quality based on the OPC specifications, refer to Deconstructing the
OPC Quality Field.

String Definitions
QualityID.Name QualityID.Code Description

OPC_QUALITY_BAD 0 (0x00) Bad quality. Reason unknown.

OPC_QUALITY_COMM_FAILURE 24 (0x18)
Bad quality. Communications have
failed and there is no last known
value.

OPC_QUALITY_CONFIG_ERROR 4 (0x04)
Bad quality. There is as server
configuration problem, such as the
item in question has been deleted.

OPC_QUALITY_DEVICE_FAILURE 12 (0x0C) Bad quality. Device failure detected.

OPC_QUALITY_EGU_EXCEEDED 84 (0x54)
Uncertain quality. The returned value
is outside the EGU limits defined for
item.

OPC_QUALITY_GOOD 192 (0xC0) Good quality.

OPC_QUALITY_LAST_KNOWN 20 (0x14)
Bad quality. Communications have
failed but there is a last known value
available.

OPC_QUALITY_LAST_USABLE 68 (0x44)

Uncertain quality. A data source has
not provided the server with a data
update within the expected time
period. The last known value is

www.ptc.com

36

ClientAce

returned.*

OPC_QUALITY_LOCAL_OVERRIDE 216 (0xD8)

Good quality. The value has been
overridden. This may indicate that an
input has been disconnected and
that the returned value has been
manually "forced".

OPC_QUALITY_NOT_CONNECTED 8 (0x08)

Bad quality. It has been determined
that an input is disconnected, or that
no value has been provided by data
source yet.

OPC_QUALITY_OUT_OF_SERVICE 28 (0x1C)
Bad quality. The item is off scan,
locked, or inactive.

OPC_QUALITY_SENSOR_CAL 80 (0x50)

Uncertain quality. The value has
either exceeded the sensor's limits
(limit bits should be set to 1 or 2), or
the sensor is out of calibration (limit
bits should be 0).

OPC_QUALITY_SENSOR_FAILURE 16 (0x10)
Bad quality. A sensor failure has
been detected. Lth limit bits may
provide additional information.

OPC_QUALITY_SUB_NORMAL 88 (0x58)

Uncertain quality. The value is
derived from multiple sources, and
fewer than the required number are
good.

OPC_QUALITY_UNCERTAIN 64 (0x40)
Uncertain quality. No specific reason
is known.

OPC_QUALITY_WAITING_FOR_INITIAL_DATA 32 (0x20)
Bad quality. No value has been
provided to the server yet.

*This is different from the OPC_QUALITY_LAST_KNOWN quality, which is used when the server is unable to
read a value from a device. In this case, a data source has failed to write a value to the server in an
unsolicited manner.

ResultID Class
ResultID objects are used to describe the result of an operation on an OPC item, such as read, write, and
subscribe. ResultID objects will contain the error code provided by the server, its string representation, and a
description of the error code. Each item will have its own ResultID, because requests that contain multiple
items may succeed for some items and fail for other items.

Property
Data
Type

Description

Code Integer The code sent by the server for the particular action.

Description String The description of the error. The language depends on the locale.

Name String The string representation of the code.

www.ptc.com

37

ClientAce

Succeeded Boolean
This property will be True if the operation was a success for the item. If the
operation failed, it will be False and the specific reason for that failure can be
determined by examining the other properties.

String Definitions
ResultID.Name ResultID.Code Description

OPC_E_BADRIGHTS
-1073479674
(0xC0040006)

The item's access rights do not allow
the operation.

OPC_E_BADTYPE
-1073479676
(0xC0040004)

The server cannot convert the data
between the specified format and/or
requested data type and the
canonical data type.

OPC_E_DEADBANDNOTSET
-1073478656
(0xC0040400)

The item's deadband has not been
set.

OPC_E_DEADBANDNOTSUPPORTED
-1073478655
(0xC0040401)

The item does not support
deadband.

OPC_E_DUPLICATENAME
-1073479668
(0xC004000C)

Duplicate name not allowed.

OPC_E_INVALID_PID
-1073479165
(0xC0040203)

The specified Property ID is not valid
for the item.

OPC_E_INVALIDCONFIGFILE
-1073479664
(0xC0040010)

The server's configuration file is an
invalid format.

OPC_E_INVALIDCONTINUATIONPOINT
-1073478653
(0xC0040403)

The continuation point is not valid.

OPC_E_INVALIDFILTER
-1073479671
(0xC0040009)

The filter string is not valid.

OPC_E_INVALIDHANDLE
-1073479679
(0xC0040001)

The handle value is not valid.

OPC_E_INVALIDITEMID
-1073479672
(0xC0040008)

The Item ID does not conform to the
server's syntax.

OPC_E_NOBUFFERING
-1073478654
(0xC0040402)

The server does not support the
buffering of data items that are
collected at a faster rate than the
group update rate.

OPC_E_NOTFOUND
-1073479663
(0xC0040011)

The requested object (such as a
public group) was not found.

OPC_E_NOTSUPPORTED
-1073478650
(0xC0040406)

The server does not support the
writing of quality and/or timestamp.

OPC_E_PUBLIC
-1073479675
(0xC0040005)

The requested operation cannot be
done on a public group.

OPC_E_RANGE
-1073479669
(0xC004000B)

The value is out of range.

OPC_E_RATENOTSET
-1073478651
(0xC0040405)

There is no sampling rate set for the
specified item.

OPC_E_UNKNOWNITEMID -1073479673 The Item ID was refused by the

www.ptc.com

38

ClientAce

(0xC0040007) server.

OPC_E_UNKNOWNPATH
-1073479670
(0xC004000A)

The item's access path is not known
to the server.

OPC_S_CLAMP
-1073479666
(0x0004000E)

A value passed to write was
accepted, but the output was
clamped.

OPC_S_DATAQUEUEOVERFLOW
-1073478652
(0xC0040404)

Not every detected change has been
returned since the server's buffer
reached its limit and had to purge
the oldest data.

OPC_S_INUSE
-1073479665
(0xC004000F)

The operation cannot be performed
because the object is being
referenced.

OPC_S_UNSUPPORTEDRATE
-1073479667
(0xC004000D)

The server does not support the
requested data rate but will use the
closest available rate.

WIN_CONNECT_E_ADVISELIMIT
-2147220991
(0x80040201)

Advise limit exceeded for this object.

WIN_CONNECT_E_NOCONNECTION
-2147220992
(0x80040200)

The client has no callback registered.

WIN_CONNECT_E_CANNOTCONNECT
-2147220990
(0x80040202)

The client cannot connect.

WIN_DISP_E_TYPEMISMATCH
-2147352571
(0x80020005)

Type mismatch.

WIN_E_FAIL
-2147467259
(0x80004005)

Unknown error.

WIN_E_INVALIDARG
-2147024809
(0x80070057)

An invalid parameter was passed to
a method call.

WIN_RPC_S_CALL_FAILED
-2147023170
(0x800706BE)

Remote procedure call failed.

WIN_RPC_S_SERVER_UNAVAILABLE
-2147023174
(0x800706BA)

The RPC server is currently not
available.

WIN_S_FALSE 1 (0x00000001) The function was partially successful.

WIN_S_OK 0 (0x00000000) The operation succeeded.

UserIdentityToken Class
This is the base class for the UserIdentity Tokens.

Property Data Type Description

TokenType UserTokenType The type of UserIdentity token.

www.ptc.com

39

ClientAce

UserIdentityTokenCertificate Class
The UserIdentityTokenCertificate Class defines the UserIdentityToken that will pass an X509v3 certificate for
User Authentication.

Property Data Type Description

Certificate Byte The X509 Certificate in DER format.

PrivateKey Byte The PrivateKey for the X509 Certificate in PEM format.

TokenType UserTokenType The type of UserIdentity token.

UserIdentityTokenIssuedToken Class
The UserIdentityTokenIssuedToken Class defines the UserIdentityToken for authentication based on a WS-
Security compliant token (such as a Kerberos token).

Property Data Type Description

EncryptionAlgorithm String
The encryption algorithm used to encrypt the token data. If the
string is empty, the token data is not encrypted.

TokenData Byte
The XML representation of the token encoded to a Byte string.
This token may be encrypted with the server certificate.

TokenType UserTokenType The type of UserIdentity token.

UserIdentityTokenUserPassword Class
The UserIdentityTokenUserPassword Class defines the user name and password used with User
Authentication.

Property Data Type Description

Password String This sets the password that will be used for User Authentication.

TokenType UserTokenType The type of UserIdentity token.

Username String This sets the user name that will be used for User Authentication.

BrowseFilter Enumeration
The BrowseFilter Enumeration is used to specify the type of child elements returned by the Browse method.

Name Value Description

ALL 0 All elements will be returned.

BRANCH 1 Only elements of type Branch will be returned.

ITEM 2 Only elements of type Item will be returned.

Property ID Enumeration
The values shown below are the enumeration of all the Item Property ID values.

Name Value Description

ACCESSRIGHTS 5 The item's access rights.

www.ptc.com

40

ClientAce

ALARM_AREA_LIST 302 The list of alarm areas.

ALARM_QUICK_HELP 301 The alarm's quick help.

CLOSELABEL 106 The item's close label.

CONDITION_LOGIC 304 The item's condition logic.

CONDITION_STATUS 300 The item's condition status.

CONSISTENCY_WINDOW 605 The item's consistency window.

DATA_FILTER_VALUE 609 The value of the item's data filter.

DATATYPE 1 The item's data type.

DEADBAND 306 The item's deadband.

DESCRIPTION 101 The item's description.

DICTIONARY 603 The item's dictionary.

DICTIONARY_ID 601 The dictionary's ID.

ENGINEERINGUNITS 100 Engineering units.

EUINFO 8 The engineering units' information.

EUTYPE 7 The type of engineering units.

HI_LIMIT 308 The item's hi limit.

HIGHEU 102 The high engineering units.

HIGHIR 104

HIHI_LIMIT 307

LIMIT_EXCEEDED 305 The item exceeded the limit.

LO_LIMIT 309 The item's lo limit.

LOLO_LIMIT 310

LOWEU 103 The low engineering units.

LOWIR 105

OPENLABEL 107 The item's open label.

PRIMARY_ALARM_AREA 303 The area of the primary alarm.

QUALITY 3 The item's quality.

RATE_CHANGE_LIMIT 311 The item's rate change limit.

SCANRATE 6 The item's scan rate.

SOUNDFILE 313 The item's sound file.

TIMESTAMP 4 The item's timestamp.

TIMEZONE 108 The item's time zone.

TYPE_DESCRIPTION 604 The description of the item's type.

TYPE_ID 602 The type of ID.

TYPE_SYSTEM_ID 600 The type of System ID.

UNCONVERTED_ITEM_ID 607 The unconverted item's ID.

UNFILTERED_ITEM_ID 608 The unfiltered item's ID.

VALUE 2 The item's value.

WRITE_BEHAVIOR 606 The item's write behavior.

www.ptc.com

41

ClientAce

ServerState Enumeration
Changes in server connection state (as indicated in ServerStateChanged events) may contain one of the
enumerated values described in the table below.

Name Value Description

CONNECTED 4 The server is connected.

DISCONNECTED 1 The server is disconnected.

ERRORSHUTDOWN 2 The server is shutting down.

ERRORWATCHDOG 3
The ClientAce API watchdog has determined that a server connection has
failed. ClientAce may attempt to reconnect to the server depending on the
options specified when the Connect method was called.

UNDEFINED 0 The server state is not known.

ReturnCode Enumeration
Most ClientAce API methods will return a code that indicates the operation's level of success. The code may
take one of the enumerated values described in the table below. An exception will be thrown in the event
that the function cannot satisfy the request (due to invalid arguments or unexpected errors).

Name Value Description

ITEMANDQUALITYERROR 2

An error was returned during operation for at least one item. The
returned quality for at least one item (either the same or
different item) was not good. The items can be determined by
checking the ResultID and the quality field of the ItemIdentifier
array.

ITEMERROR 1
For at least one item, an error was returned during operation.
The item can be determined by checking the ResultID of the
ItemIdentifier array.

QUALITYNOTGOOD 2
For at least one item, the returned quality was not good. The item
can be determined by checking the quality field of the
ItemIdentifier array.

SUCCEEDED 0 The function returned successfully.

UNSUPPORTEDUPDATERATE 4
The function returned successfully, but the requested update was
not supported by the underlying server. The revised update will
be returned to the client. *

*This only applies to the Subscribe and SubscriptionModify methods.

UserTokenType Enumeration
The UserTokenType Enumeration identifies the type of User Authentication that will be used when
connecting to the server.

Name Value Description

ANONYMOUS 0 No User Authentication is used.

CERTIFICATE 2 Authenticate with a User Certificate.

www.ptc.com

42

ClientAce

ISSUEDTOKEN 3 Authenticate with an issued token (such as a Kerberos token).

USERNAME 1 Authenticate with a User name and Password.

DaServerMgt Object
The DaServerMgt Object is a class that is used to connect to an OPC server to collect and manage its data.
The object supports OPC DA, OPC XML-DA, and OPC UA server connections. For more information on a
specific topic, select a link from the list below.

AccessRights Enumerated Values
DataChanged Event
ReadCompleted Event
ServerStateChanged Event
WriteCompleted Event
Browse Method
Connect Method
Disconnect Method
GetProperties Method
Read Method
ReadAsync Method
Subscribe Method
SubscriptionAddItems Method
SubscriptionCancel Method
SubscriptionModify Method
SubscriptionRemoveItems Method
Write Method
WriteAsync Method
IsConnected Property
ServerState Property

Creating DaServerMgt Object
Users must create an instance of DaServerMgt.

[Visual Basic]
Dim WithEvents daServerMgt As New Kepware.ClientAce.OpcDaClient.DAServerMgt

[C#]
DaServerMgt daServerMgt = new Kepware.ClientAce.OpcDaClient.DaServerMgt ();

AccessRights Enumerated Values
The enumeration for the OPC DA item access rights are described in the table below.

Value Constant Name Description

0 NOTDEFINED No rights are defined. This is the default state.

www.ptc.com

43

ClientAce

1 READONLY The item is Read Only.

2 READWRITE The item can be Read and Written.

3 WRITEONLY The item is Write Only.

DataChanged Event
Event

DataChanged(
ByVal clientSubscription As Integer,
ByVal allQualitiesGood As Boolean,
ByVal noErrors As Boolean,
ByVal itemValues() As Kepware.ClientAce.OpcDaClient.ItemValueCallback

) Handles daServerMgt.DataChanged

Properties
A DataChanged Event will occur when the value or quality of one or more items in a subscription changes.
To receive the new item values, implement a DataChanged event handler.

Parameter Functionality

clientSubscription This is the handle given to the subscription when created with the Subscribe method.

allQualitiesGood
This flag will be set True if all values included in the data changed notification have
good quality.

noErrors
This flag will be set True if there are no item errors (as indicated by the ResultID) in
the values included in the data changed notification. If this flag is False, all ItemValue.
ResultID objects should be examined to determine which items are in error and why.

itemValues
This array contains the value, quality, and timestamp that have changed. The
ItemValue elements also contain ResultID objects that are used to indicate possible
item-specific errors.

DataChanged Event Handling Sample Code
The DataChanged Event Handling delegate processes the data change updates received by the ClientAce
project from the server. DataChanged Events are sent when a subscription is active and the value or quality
of an item in the Subscription changes from one poll cycle to the next.

Private Sub daServerMgt_DataChanged(ByVal clientSubscription As Integer, ByVal
allQualitiesGood As Boolean, ByVal noErrors As Boolean, ByVal itemValues() As
Kepware.ClientAce.OpcDaClient.ItemValueCallback) Handles daServerMgt.DataChanged

BeginInvoke(New
Kepware.ClientAce.OpcDaClient.DaServerMgt.DataChangedEventHandler(AddressOf
DataChanged), New Object() {clientSubscription, allQualitiesGood, noErrors, itemValues})
End Sub

Private Sub DataChanged(ByVal clientSubscription As Integer, ByVal allQualitiesGood As Boolean,
ByVal noErrors As Boolean, ByVal itemValues() As
Kepware.ClientAce.OpcDaClient.ItemValueCallback)

Try

www.ptc.com

44

ClientAce

~~ Process the call back information here.
Catch ex As Exception
~~ Handle any exception errors here.
End Try

End Sub

Note: Users must forward the callback to the main thread of the application when accessing the GUI
directly from the callback. This is recommended even if the application is running in the background.

Adding a DataChanged Event Handler in Visual Basic

1. To start, declare a DaServerMgt object "WithEvents".

2. Next, dim "WithEvents daServerMgt As New Kepware.ClientAce.OpcDaClient.DaServerMgt".

3. Create a subroutine called "Sub 1" to handles the event. Then, create a subroutine or function called
"Sub 2" that will act on the event by updating fields or controls within a form, storing values in a
cache, and so forth.

4. Within Sub 1, pass the constructor to a new
Kepware.ClientAce.OpcDaClient.DaServerMgt.DataChanged Event Handler to the BeginInvoke
Method as a parameter.

5. Within the constructor to the Kepware.ClientAce.OpcDaClient.DaServerMgt.DataChanged Event
Handler, pass the address of Sub 2.

6. Finally, within the same BeginInvoke Method, pass an array of objects as the last parameter that
contain the relevant arguments from the event (which will become the parameters of Sub 2) to Sub 2.

Adding a DataChanged Event Handler in C#

1. Register the event with "DaServerMgt object. daServerMgt.DataChanged += new
DAServerMgt.DataChangedEventHandler(DataChanged)".

2. Then, implement the event handler function as desired.

Example Code
[Visual Basic]
Try
 Dim itemValue As Kepware.ClientAce.OpcDaClient.ItemValueCallback
 For Each itemValue In itemValues
 If itemValue.ResultID.Succeeded = True Then
 Console.WriteLine(_
 "Item: " & itemValue.ClientHandle & _
 "Value: " & itemValue.Value & _
 "Quality: " & itemValue.Quality.Name & _
 "Timestamp: " & itemValue.TimeStamp)

 Else
 Console.WriteLine("Item error")
 End If
 Next
Catch ex As Exception

www.ptc.com

45

ClientAce

 Console.WriteLine("DataChanged exception. Reason: " & ex.Message)
End Try

[C#]
private void DataChanged (int clientSubscription, bool allQualitiesGood, bool noErrors,
ItemValueCallback[] itemValues)
{
try
{
 foreach (ItemValueCallback itemValue in itemValues)
{
 if (itemValue.ResultID.Succeeded)
{
 Console.WriteLine(

"Item: {0}
Value: {1},
Quality: {2},
Timestamp: {3}",

itemValue.ClientHandle,
itemValue.Value,
itemValue.Quality.Name,
itemValue.TimeStamp);

 }
 else
{
 Console.WriteLine("Item error");
 }
 }
 }
catch (Exception ex)
{
 Console.WriteLine("DataChanged exception. Reason: {0}", ex);
 }
}

ReadCompleted Event
Event

[Visual Basic]
ReadCompleted(_

ByVal transactionHandle As Integer, _
ByVal allQualitiesGood As Boolean, _
ByVal noErrors As Boolean, _
ByVal itemValues() As Kepware.ClientAce.OpcDaClient.ItemValueCallback _

) Handles daServerMgt.ReadCompleted

Properties
A ReadCompleted Event will occur when the API has completed an asynchronous read request.

www.ptc.com

46

ClientAce

Parameter Functionality

transactionHandle This is the handle for the read transaction passed to ReadAsync.

allQualitiesGood
This flag will be set True if all values included in the read completed notification have
good quality.

noErrors

This flag will be set True if there are no item errors (as indicated by the ResultID) in
the values included in the read completed notification. If this flag is False, users
should examine all ItemValue.ResultID objects to determine which items are in error
and why.

itemValues
This array contains the value, quality, and timestamp of the items specified in the
ReadAsync request. The ItemValue elements also contain ResultID objects that are
used to indicate possible item-specific errors.

ReadCompleted Event Handling Sample Code
The ReadCompleted Event Handling delegate processes the completion result of an Asynchronous Read
request.

Private Sub daServerMgt_ReadCompleted(ByVal transactionHandle As Integer, ByVal
allQualitiesGood As Boolean, ByVal noErrors As Boolean, ByVal itemValues() As
Kepware.ClientAce.OpcDaClient.ItemValueCallback) Handles daServerMgt.ReadCompleted

BeginInvoke(New
Kepware.ClientAce.OpcDaClient.DaServerMgt.ReadCompletedEventHandler(AddressOf
ReadCompleted), New Object() {transactionHandle, allQualitiesGood, noErrors, itemValues})
End Sub

Private Sub ReadCompleted(ByVal transactionHandle As Integer, ByVal allQualitiesGood As
Boolean, ByVal noErrors As Boolean, ByVal itemValues() As
Kepware.ClientAce.OpcDaClient.ItemValueCallback) Handles daServerMgt.ReadCompleted

Try
~~ Process the call back information here.
Catch ex As Exception
~~ Handle any exception errors here.
End Try

End Sub

Note: Users must forward the callback to the main thread of the application when accessing the GUI
directly from the callback. This is recommended even if the application is running in the background.

Adding a ReadCompleted Event Handler in Visual Basic

1. To start, declare a DaServerMgt object "WithEvents".

2. Dim "WithEvents daServerMgt As New Kepware.ClientAce.OpcDaClient.DaServerMgt".

3. Create a subroutine called "Sub 1" to handles the event. Then, create a subroutine or function called
"Sub 2" that will act on the event by updating fields or controls within a form, storing values in a
cache, and so forth.

www.ptc.com

47

ClientAce

4. Within Sub 1, pass the constructor to a new
Kepware.ClientAce.OpcDaClient.DaServerMgt.ReadCompleted Event Handler to the BeginInvoke
Method as a parameter.

5. Within the constructor to the Kepware.ClientAce.OpcDaClient.DaServerMgt.ReadCompleted Event
Handler, pass the address of Sub 2.

6. Finally, within the same BeginInvoke Method, pass an array of objects as the last parameter that
contain the relevant arguments from the event (which will become the parameters of Sub 2) to Sub 2.

Adding a ReadCompleted Event Handler in C#

1. Register the event with "DaServerMgt object. daServerMgt.ReadCompleted += new
DAServerMgt.ReadCompletedEventHandler(ReadCompleted)".

2. Then, implement the event handler function as desired.

Example Code
[Visual Basic]
Try
 Dim itemValue As Kepware.ClientAce.OpcDaClient.ItemValueCallback
For Each itemValue In itemValues
 If itemValue.ResultID.Succeeded = True Then Console.WriteLine(_
 "Item: " & itemValue.ClientHandle & _
 "Value: " & itemValue.Value & _
 "Quality: " & itemValue.Quality.Name & _
 "Timestamp: " & itemValue.TimeStamp)
 Else
 Console.WriteLine("Item error")
 End If
 Next
Catch ex As Exception
 Console.WriteLine("ReadCompleted exception. Reason: " & ex.Message)
End Try

[C#]
private void ReadCompleted (int transactionHandle, bool allQualitiesGood, bool noErrors,
ItemValueCallback[] itemValues)
{
 try
{
 foreach (ItemValueCallback itemValue in itemValues)
{
 if (itemValue.ResultID.Succeeded)
{
 Console.WriteLine(

"Item: {0}
Value: {1},
Quality: {2},
Timestamp: {3}",

www.ptc.com

48

ClientAce

 itemValue.ClientHandle,
 itemValue.Value,
 itemValue.Quality.Name,
 itemValue.TimeStamp);
 }
 else
{
 Console.WriteLine("Item error");
 }
 }
 }
 catch (Exception ex)
{
 Console.WriteLine("ReadCompleted exception. Reason: {0}", ex);
 }
}

ServerStateChanged Event
Event

ServerStateChanged(
ByVal clientHandle As Integer,
ByVal state As Kepware.ClientAce.OpcDaClient.ServerState

) Handles daServerMgt.ServerStateChanged

Properties
A ServerStateChanged Event will occur when the API has detected that the connection state with a server
has changed. To monitor these changes and take appropriate action in response, implement a
ServerStateChanged Event Handler in the client application.

Parameter Functionality

clientHandle
This is the client handle associated with the particular server connection for a state
change notification. This handle is provided by the client though the Connect Method.

state The current status of the connection.*

*For more information, refer to ServerState Enumeration.

ServerStateChanged Event Handling Sample Code
The ServerStateChanged Event Handling delegate processes the change in state messages from the server.
These messages indicate if the server is in a run state, is shutting down, and so forth.

Private Sub daServerMgt_ServerStateChanged(ByVal clientHandle As Integer, ByVal state As
Kepware.ClientAce.OpcDaClient.ServerState) Handles daServerMgt.ServerStateChanged

BeginInvoke(New
Kepware.ClientAce.OpcDaClient.DaServerMgt.ServerStateChangedEventHandler(AddressOf
ServerStateChanged), New Object() {clientHandle, state})
End Sub

www.ptc.com

49

ClientAce

Private Sub ServerStateChanged(ByVal clientHandle As Integer, ByVal state As
Kepware.ClientAce.OpcDaClient.ServerState)

Try
~~ Process the call back information here.
Catch ex As Exception
~~ Handle any exception errors here.
End Try

End Sub

Note: Users must forward the callback to the main thread of the application when accessing the GUI
directly from the callback. This is recommended even if the application is running in the background.

Adding a ServerStateChanged Event Handler in Visual Basic

1. To start, declare a DaServerMgt object "WithEvents".

2. Next, dim "WithEvents daServerMgt As New Kepware.ClientAce.OpcDaClient.DaServerMgt".

3. Create a subroutine called "Sub 1" to handles the event. Then, create a subroutine or function called
"Sub 2" that will act on the event by updating fields or controls within a form, storing values in a
cache, and so forth.

4. Within Sub 1, pass the constructor to a new
Kepware.ClientAce.OpcDaClient.DaServerMgt.ServerStateChanged Event Handler to the
BeginInvoke Method as a parameter.

5. Within the constructor to the Kepware.ClientAce.OpcDaClient.DaServerMgt.ServerStateChanged
Event Handler, pass the address of Sub 2.

6. Finally, within the same BeginInvoke Method, pass an array of objects as the last parameter that
contain the relevant arguments from the event (which will become the parameters of Sub 2) to Sub 2.

Adding a ServerStateChanged Event Handler in C#

1. Register the event with "DaServerMgtobject. daServerMgt.ServerStateChanged+=
newDAServerMgt.ServerStateChangedEventHandler(ServerStateChanged);".

2. Implement the event handler function as desired.

WriteCompleted Event
Event

WriteCompleted(
ByVal transaction As Integer,
ByVal noErrors As Boolean,
ByVal itemResults() As Kepware.ClientAce.OpcDaClient.ItemResultCallback

) Handles daServerMgt.WriteCompleted

Properties
A WriteCompleted Event will occur when the API has completed an asynchronous write request.

www.ptc.com

50

ClientAce

Parameter Functionality

transaction The handle for the read transaction passed to WriteAsync.

noErrors

This flag will be set True if there are no item errors (as indicated by the ResultID) in the
items included in the write completed notification. If this flag is False, users should
examine all ItemResultCallback. ResultID objects to determine which items are in error
and why.

itemResults This array contains the ClientHandle value and ResultID object for every written item.

WriteCompleted Event Handling Sample Code
The WriteCompleted Event Handling delegate processes the completion result of an Asynchronous Write
request. The items written in an Asynchronous Write request do not have to be in an Active Subscription.

Private Sub daServerMgt_WriteCompleted(ByVal transaction As Integer, ByVal noErrors As
Boolean, ByVal itemResults() As Kepware.ClientAce.OpcDaClient.ItemResultCallback) Handles
daServerMgt.WriteCompleted

BeginInvoke(New
Kepware.ClientAce.OpcDaClient.DaServerMgt.WriteCompletedEventHandler(AddressOf
WriteCompleted), New Object() {transaction, noErrors, itemResults})
End Sub

Private Sub WriteCompleted(ByVal transaction As Integer, ByVal noErrors As Boolean, ByVal
itemResults() As Kepware.ClientAce.OpcDaClient.ItemResultCallback)

Try
~~ Process the call back information here.
Catch ex As Exception
~~ Handle any exception errors here.
End Try

End Sub

Users must forward the callback to the main thread of the application when accessing the GUI directly
from the callback. This is recommended even if the application is running in the background.

Adding a WriteCompleted Event Handler in Visual Basic

1. To start, declare a DaServerMgt object "WithEvents".

2. Next, dim "WithEvents daServerMgt As New Kepware.ClientAce.OpcDaClient.DaServerMgt."

3. Create a subroutine called "Sub 1" to handles the event. Then, create a subroutine or function called
"Sub 2" that will act on the event by updating fields or controls within a form, storing values in a
cache, and so forth.

4. Within Sub 1, pass the constructor to a new
Kepware.ClientAce.OpcDaClient.DaServerMgt.WriteCompleted Event Handler to the BeginInvoke
Method as a parameter.

5. Within the constructor to the Kepware.ClientAce.OpcDaClient.DaServerMgt.WriteCompleted Event
Handler, pass the address of Sub 2.

www.ptc.com

51

ClientAce

6. Finally, within the same BeginInvoke Method, pass an array of objects as the last parameter that
contain the relevant arguments from the event (which will become the parameters of Sub 2) to Sub 2.

Adding a WriteCompleted Event Handler in C#

1. Register the event with "DaServerMgt object. daServerMgt.WriteCompleted += new
DAServerMgt.WriteCompletedEventHandler(WriteCompleted)".

2. Then, implement the event handler function as desired.

Example Code
[Visual Basic]
Try
 Dim result As Kepware.ClientAce.OpcDaClient.ItemResultCallback
 For Each result In itemResults
 If result.ResultID.Succeeded = False Then
 Console.WriteLine("Write failed for item: " & _
 result.ClientHandle)
 End If
 Next
Catch ex As Exception
 Console.WriteLine("WriteCompleted exception. Reason: " & ex.Message)
End Try

[C#]
private void WriteCompleted (int transactionHandle, bool noErrors,
ItemResultCallback[] itemResults)
{
 try
{
 foreach (ItemResultCallback result in itemResults)
{
 if (!result.ResultID.Succeeded)
{
 Console.WriteLine("Write failed for item: {0}",
 result.ClientHandle);
 }
 }
 }
catch (Exception ex)
{
 Console.WriteLine("WriteCompleted exception. Reason: {0}", ex);
 }
}

Browse Method
Method

Browse (
ByVal itemName As String,

www.ptc.com

52

ClientAce

ByVal itemPath As String,
ByRef continuationPoint As String,
ByVal maxElementsReturned As Integer,
ByVal browseFilter As Kepware.ClientAce.OpcDaClient.BrowseFilter,
ByVal propertyIDs() As Integer,
ByVal returnAllProperties As Boolean,
ByVal returnPropertyValues As Boolean,
ByRef browseElements() As Kepware.ClientAce.OpcDaClient.BrowseElement,
ByRef moreElements As Boolean

) As/returns Kepware.ClientAce.OpcDaClient.ReturnCode

Properties
The Browse Method is used to search for tags in the address space of an OPC server. The address space is
usually displayed in a tree structure because it is close to the outline of the items and branches of the
internal hierarchical structure of the server itself.

Parameter Use Functionality

itemName Input
This parameter specifies the element (branch) for which all child
elements will be obtained. If an empty string is passed, the root level of
the server will be browsed.

itemPath Input Reserved for future use.

continuationPoint Output

If the number of returned elements is limited by the client (parameter
maxElementsReturned). If the server limits the returned elements to a
certain number, this parameter will be provided to specify a reference
point for follow up Browse calls regarding this element in the server's
hierarchy.*

maxElementsReturned Input
This parameter can be used to define the maximum number of
elements the server should return. If this value is set to 0, all elements
will be returned.

browseFilter Input
The BrowseFilter is used to define the type of elements to be returned.
Possible values include all, items, branches.

propertyIDs Input
This specifies the properties that should be obtained when calling the
Browse. They will be returned in the associated BrowseElement. This
will be ignored if the returnAllProperties parameter is set to True.

returnAllProperties Input
If the returnAllProperties flag is set to True, all properties of the items
will be obtained automatically. The properties will be returned in the
associated BrowseElement.

returnPropertyValues Input
If the returnPropertyValues flag is set to True, the values of the
requested properties will be returned.

browseElements Output
This array contains all child elements of the element specified in
ItemName.

moreElements Output
The moreElements parameter indicates when not all child elements are
returned.

*If an OPC server returns a continuation point, the Browse must be called again with the same parameters
but using the returned Continuation Point to obtain missing child elements of this node.

www.ptc.com

53

ClientAce

Notes:

1. For more information on Return Value: ReturnCode, refer to ReturnCode Enumeration. In the event
that the function cannot satisfy the request due to invalid arguments or unexpected errors, an
exception will be thrown.

2. Before the Browse method is called, its parent DaServerMgt object must be connected to an OPC
server using the Connect method. Otherwise, a null reference exception will be thrown.

Example Code
These examples show how to browse the entire namespace of the connected server using recursive
functions calls. The results are placed in a tree view control named "tvItems".

[Visual Basic]
'Our main class
Public Class Main
'Create server management object
Dim daServerMgt As New Kepware.ClientAce.OpcDaClient.DaServerMgt
Dim tvItems As New System.Windows.Forms.TreeView
Sub MainThread()
' Create root node
tvItems.Nodes.Add("KepServerEx")
Dim rootNode As TreeNode = tvItems.Nodes(0)
'We assume a connection has already taken place with our
'Server Management object and our connection is still valid
' Browse from root
Browse("", rootNode)
End Sub
Private Sub Browse(ByVal branchName As String, ByVal node As TreeNode)
Dim itemName As String
Dim itemPath As String
Dim continuationPoint As String = ""
Dim maxElementsReturned As Integer
Dim browseFilter As Kepware.ClientAce.OpcDaClient.BrowseFilter
Dim propertyIDs() As Integer
Dim returnAllProperties As Boolean
Dim returnPropertyValues As Boolean
Dim browseElements() As Kepware.ClientAce.OpcDaClient.BrowseElement
Dim moreElements As Boolean = True
' Set input parameters
itemName = branchName
itemPath = ""
maxElementsReturned = 0
browseFilter = Kepware.ClientAce.OpcDaClient.BrowseFilter.ALL
propertyIDs = Nothing ' prevent Visual Studio warning
returnAllProperties = True
returnPropertyValues = False
browseElements = Nothing ' prevent Visual Studio warning

www.ptc.com

54

ClientAce

' Call Browse API method
Try
While moreElements = True
daServerMgt.Browse(itemName, _
itemPath, _
continuationPoint, _
maxElementsReturned, _
browseFilter, _
propertyIDs, _
returnAllProperties, _
returnPropertyValues, _
browseElements, _
moreElements)
' Handle results
Dim numberOfElementsReturned As Integer = browseElements.GetLength(0)
Dim element As Integer
For element = 0 To numberOfElementsReturned - 1
' Add item to specified tree node
node.Nodes.Add(browseElements(element).Name)
' Browse for item's children (recursive call!!!)
If browseElements(element).HasChildren Then
itemName = browseElements(element).ItemName
Browse(browseElements(element).ItemName, node.Nodes(element))
End If
Next
End While
Catch ex As Exception
MsgBox("Browse exception: " & ex.Message)
End Try
End Sub
End Class

[C#]
//Our Main Class
public class Main
{
//Create our Server Management Object
DaServerMgt daServerMgt = new Kepware.ClientAce.OpcDaClient.DaServerMgt();

System.Windows.Forms.TreeView tvItems = new System.Windows.Forms.TreeView();
public void BeginBrowse()
{
// Create root node
tvItems.Nodes.Add("KepServerEx");
TreeNode rootNode = tvItems.Nodes[0];
//We assume a connection has already taken place by our

www.ptc.com

55

ClientAce

//Server Management object and our connection is still valid
// Browse from root
Browse("", rootNode);
}
private void Browse(string branchName, TreeNode node)
{
// Declare parameters
string itemName;
string itemPath;
string continuationPoint = "";
int maxElementsReturned;
BrowseFilter browseFilter;
int[] propertyIDs = null;
bool returnAllProperties;
bool returnPropertyValues;
BrowseElement[] browseElements = null;
bool moreElements = true;
// Set input parameters
itemName = branchName;
itemPath = "";
maxElementsReturned = 0;
browseFilter = BrowseFilter.ALL;
returnAllProperties = true;
returnPropertyValues = false;
// Call Browse API method
try
{
while (moreElements == true)
{
daServerMgt.Browse(itemName, itemPath, ref continuationPoint,
maxElementsReturned, browseFilter, propertyIDs,
returnAllProperties, returnPropertyValues, out browseElements, out
moreElements);
// Handle results
int numberOfElementsReturned = browseElements.GetLength(0);
int element;
for (element = 0; element < numberOfElementsReturned; element++)
{
// Add item to specified tree node
node.Nodes.Add(browseElements[element].Name);
// Browse for item's children (recursive call!!!)
if (browseElements[element].HasChildren)
{
itemName = browseElements[element].ItemName;
Browse(browseElements[element].ItemName,node.Nodes[element]);
}
}
}

www.ptc.com

56

ClientAce

}
catch (Exception ex)
{
Console.WriteLine("Browse exception. Reason: {0}", ex);
}
}

Connect Method
Method

Connect(
ByVal url As String,
ByVal clientHandle As Integer,
ByRef connectInfo As Kepware.ClientAce.OpcDaClient.ConnectInfo,
ByRef connectFailed As Boolean

)

Properties
The Connect Method establishes a connection with an OPC server.

Parameter Use Functionality

URL Input

The URL of the OPC servers.

Tip: The syntax of the URL that uniquely identifies a server must follow
this format (except for OPC XML-DA):

[OpcSpecification]://[Hostname]/[ServerIdentifier]

OpcSpecification: Selects the OPC Specification to be used.

l "opcda" for OPC Data Access 2.05A and later (COM).

l Hostname: Name or IP Address of the machine that hosts the OPC
server. For the local machine, "localhost" must be used (127.0.0.1).

l ServerIdentifier: Identifies the OPC server on the specified host.

l OPC DA (COM) ? [ProgID]/[optional ClassID]

Note: For OPC DA servers, the API will attempt to connect using the
ClassID first. If the ClassID is not given (or is found to be invalid), the API
will attempt to connect using the ProgID.

OPC DA Example
opcda://localhost/Kepware.KEPServerEX.V5
opcda://127.0.0.1/Kepware.KEPServerEX.V5/{B3AF0BF6-4C0C-4804-A122-
6F3B160F4397}

OPC XML-DA Example
http://127.0.0.1/Kepware/xmldaservice.asp

www.ptc.com

57

ClientAce

OPC UA Example
opc.tcp://127.0.0.1:49320

ClientHandle Input
The client application can specify a handle to uniquely identify a server
connection. The API will return this handle in ServerStateChanged Events.

ConnectInfo Input/Output
Additional connection options are specified using the connectInfo
parameter. For more information, refer to ConnectInfo Class.

ConnectFailed Output
This indicates whether the initial connection to the underlying server
failed. It only applies if the retryConnect flag was set in the connect call.

Example Code

[Visual Basic]
Imports Kepware.ClientAce.OpcDaClient

Module Module1

Sub Main()
' Declare variables
'Create server management object
Dim daServerMgt As New Kepware.ClientAce.OpcDaClient.DaServerMgt
Dim url As String = _
"opcda://localhost/Kepware.KEPServerEX.V5/{B3AF0BF6-4C0C-4804-A122-6F3B160F4397}"
Dim clientHandle As Integer = 1
Dim connectInfo As New Kepware.ClientAce.OpcDaClient.ConnectInfo
connectInfo.LocalId = "en"
connectInfo.KeepAliveTime = 5000
connectInfo.RetryAfterConnectionError = True
connectInfo.RetryInitialConnection = True
connectInfo.ClientName = "Demo ClientAce VB.Net Console Application"
Dim connectFailed As Boolean

Try
' Call Connect API method
daServerMgt.Connect(_
url, _
clientHandle, _
connectInfo, _
connectFailed)

' Check result
If connectFailed = True Then
Console.WriteLine("Connect failed.")
Else
Console.WriteLine("Connection to Server Succeeded.")
End If

www.ptc.com

58

ClientAce

Catch ex As Exception
Console.WriteLine("Connect exception. Reason: " & ex.Message)
End Try

Console.WriteLine("Hit Any Key to Disconnect and Exit:")
Console.Read()

If daServerMgt.IsConnected Then
daServerMgt.Disconnect()
End If
End Sub

End Module

[C#]
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Kepware.ClientAce.OpcDaClient;

namespace Simple_CS_Console_Application_VS_2010_13
{

class Program
{

static void Main(string[] args)
{
//Initialize the server object
Kepware.ClientAce.OpcDaClient.DaServerMgt DAserver = new
Kepware.ClientAce.OpcDaClient.DaServerMgt();

//Initialize the connection info class
Kepware.ClientAce.OpcDaClient.ConnectInfo connectInfo = new
Kepware.ClientAce.OpcDaClient.ConnectInfo();
bool connectFailed;
string url = "opcda://localhost/Kepware.KEPServerEX.V5/{B3AF0BF6-4C0C-4804-A122-
6F3B160F4397}";

www.ptc.com

59

ClientAce

int clientHandle = 1;

// Initialize the connect info object data
connectInfo.LocalId = "en";
connectInfo.KeepAliveTime = 5000;
connectInfo.RetryAfterConnectionError = true;
connectInfo.RetryInitialConnection = true;
connectInfo.ClientName = "Demo ClientAce C-Sharp Console Application";

//Try the server connection
try
{
DAserver.Connect(url, clientHandle, ref connectInfo, out connectFailed);
// Check result

if (connectFailed)
{
Console.WriteLine("Connect failed.");
}
else
{
Console.WriteLine("Connected to Server Succeeded.");
}
}
catch(Exception ex)
{
Console.WriteLine("Connect exception. Reason: {0}", ex);
}

Console.WriteLine("Hit Any Key to Disconnect and Exit:");
Console.Read();

if (DAserver.IsConnected)
{
DAserver.Disconnect();
}
}
}
}

Notes:

www.ptc.com

60

ClientAce

1. The IsConnected property indicates that a client application has successfully called the Connect
method. This does not necessarily indicate whether ClientAce is connected to the server. For
example, this property would remain True after a connection has failed and ClientAce is in the
process of reconnecting. To test the ClientAce to server connection state, use the ServerState
Property. The server connection state may also be monitored by implementing the
ServerStateChanged Event handler.

2. It is highly recommended that client applications wait at least 1 second after disconnecting from a
server before attempting to connect to that server again.

Disconnect Method
Method

Disconnect()

Properties
The Disconnect Method releases the connection to the OPC Server. All subscriptions and resources will be
freed.

Example Code
[Visual Basic]
If daServerMgt.IsConnected = True Then
 daServerMgt.Disconnect()
End If

[C#]
if (daServerMgt.IsConnected)

daServerMgt.Disconnect();

Get Properties Method
Method

GetProperties(
ByRef itemIdentifiers As Kepware.ClientAce.OpcDaClient.ItemIdentifier,
ByVal propertyIDs() As Integer,
ByVal returnAllProperties As Boolean,
ByVal returnPropertyValues As Boolean,
ByRef itemProperties() As Kepware.ClientAce.OpcDaClient.ItemProperties,

) As Kepware.ClientAce.OpcDaClient.ReturnCode

Properties
The GetProperties Method is used to obtain the properties of OPC items.

Parameter Use Functionality

itemIdentifiers Input/Output
The array of itemIdentifiers specifies the OPC items whose
properties will be obtained.

propertyIDs Input The IDs of the properties to be obtained by the GetProperties call.

www.ptc.com

61

ClientAce

They will be returned in the associated itemProperties element.
This will be ignored if the returnAllProperties parameter is set to
True.

returnAllProperties Input
If this flag is set to True, all properties of the items will be obtained
automatically. The properties will be returned in the associated
itemProperties element.

returnPropertyValues Input The property values will be returned if this flag is set to True.

itemProperties Output
This array contains ItemProperty objects describing the requested
properties of the items.

For more information on Return Value: ReturnCode, refer to ReturnCode Enumeration. In the event that the
function cannot satisfy the request due to invalid arguments or unexpected errors, an exception will be thrown.

Example Code
These examples show how to get the access rights and data type properties of a single item "Channel_
1.Device_1.Tag_1".

[Visual Basic]
' Declare variables
Dim itemIdentifiers(0) As Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_1"
Dim propertyIDs(1) As Integer
propertyIDs(0) = Kepware.ClientAce.OpcDaClient.PropertyID.ACCESSRIGHTS
propertyIDs(1) = Kepware.ClientAce.OpcDaClient.PropertyID.DATATYPE
Dim returnAllProperties As Boolean = False
Dim returnPropertyValues As Boolean = True
Dim itemProperties() As Kepware.ClientAce.OpcDaClient.ItemProperties
itemProperties = Nothing
Try
' Call GetProperties API method
daServerMgt.GetProperties(_
itemIdentifiers, _
propertyIDs, _
returnAllProperties, _
returnPropertyValues, _
itemProperties)
' Handle results
Dim itemProperty As Kepware.ClientAce.OpcDaClient.ItemProperty
For Each itemProperty In itemProperties(0).RequestedItemProperties
Dim propertyDescription As String = itemProperty.Description()
Dim propertyValue As String = itemProperty.Value.ToString()
Console.WriteLine(_
"Property: " & propertyDescription & _
" Value: " & propertyValue)
Next
Catch ex As Exception
Console.WriteLine("GetProperties exception. Reason: " & ex.Message)

www.ptc.com

62

ClientAce

End Try

[C#]
// Declare variables
ItemIdentifier[] itemIdentifiers = new ItemIdentifier[1];
itemIdentifiers[0] = new ItemIdentifier();
itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_1";
int[] propertyIDs = new int[2];
propertyIDs[0] = (int)PropertyID.ACCESSRIGHTS;
propertyIDs[1] = (int)PropertyID.DATATYPE;
bool returnAllProperties = false;
bool returnPropertyValues = true;
ItemProperties[] itemProperties = null;
try
{
// Call GetProperties API method
daServerMgt.GetProperties(ref itemIdentifiers, ref propertyIDs, returnAllProperties,
returnPropertyValues, out itemProperties);
// Handle results
foreach (ItemProperty itemProperty in itemProperties[0].RequestedItemProperties)
{
string propertyDescription = itemProperty.Description;
string propertyValue = itemProperty.Value.ToString();
Console.WriteLine("Property: {0} Value: {1}",
propertyDescription,
propertyValue);
}
}
catch (Exception ex)
{
Console.WriteLine("GetProperties exception. Reason: {0}", ex);
}

Read Method
Method

Read (
ByVal maxAge As Integer,
ByRef itemIdentifiers() As Kepware.ClientAce.OpcDaClient.ItemIdentifier,
ByRef itemValues () As Kepware.ClientAce.OpcDaClient.ItemValue

) As/returns Kepware.ClientAce.OpcDaClient.ReturnCode

Properties
The Read Method is used to read one or more values from the OPC server. It is strongly recommended that
a Subscription be used if the items are read cyclically (and the changed data is received in the DataChanged
Event).

www.ptc.com

63

ClientAce

Note: The Read Method allows more than one item to be read at a time. Because single multi-item writes
can be executed more efficiently than a series of single-item writes, using multi-item writes is recommended
whenever it is possible.

Parameter Use Functionality

maxAge Input

This specifies whether the server should return a value from
cache or from the device for the specified items. If the
freshness of the items cached value is within the maxAge, the
cache value will be returned. Otherwise, the server will obtain
the data from device. The value of maxAge must be in
milliseconds.*

Note: If maxAge is set to 0, the server will always obtain the
data from device.

itemIdentifiers Input/Output

The array of itemIdentifiers is used to specify the OPC items
that should be read. Possible item-specific errors will be
returned in the ResultID object of the associated ItemIdentifier.

The API will also set the ServerHandle property. It is
recommended that ItemIdentifier objects be stored if repeated
reads and writes of the same items are intended. The API will
make use of the ServerHandle values to optimize OPC calls to
the server.

itemValues Output
The array itemValues contains Value, Quality, and Timestamp
for each item.

*This is only supported for OPC DA 3.0 servers.

Notes:

1. The return code indicates the overall success of the call. If this code indicates an item-specific error
(such as ITEMERROR, QUALITYNOTGOOD, or ITEMANDQUALITYERROR), each of the ReturnID objects
should be examined to determine which items could not be read and why. In the event that the
function cannot satisfy the request (due to invalid arguments or unexpected errors), an exception will
be thrown. For more information on Return Value:ReturnCode, refer to ReturnCode Enumeration.

2. If a particular data type is desired, specify "ItemIdentifier.DataType". Because it is a requested type, it
may not be honored. The item's ResultID will indicate if the server was not able to read the item due
to an unsupported data type.

Example Code
This example reads two items: "Channel_1.Device_1.Tag_1" and "Channel_1.Device_1.Tag_2".

[Visual BAsic]

www.ptc.com

64

ClientAce

Imports Kepware.ClientAce.OpcDaClient

Module Module1

Sub Main()
' Declare variables
'Create server management object
Dim daServerMgt As New Kepware.ClientAce.OpcDaClient.DaServerMgt
'Create a URL for the server connection this could be an OPC DA or UA connection
Dim url As String = _
"opcda://localhost/Kepware.KEPServerEX.V5/{B3AF0BF6-4C0C-4804-A122-6F3B160F4397}"
'Create a unique id for the client connection
Dim clientHandle As Integer = 1
'Create and configure the connection infomration object and data
Dim connectInfo As New Kepware.ClientAce.OpcDaClient.ConnectInfo
connectInfo.LocalId = "en"
connectInfo.KeepAliveTime = 5000
connectInfo.RetryAfterConnectionError = True
connectInfo.RetryInitialConnection = True
connectInfo.ClientName = "Demo ClientAce VB.Net Console Application"
Dim connectFailed As Boolean

'Create variable for keyboard input
Dim cki As ConsoleKeyInfo

'Create an OPC Item Identifier Object and Data
Dim OPCItems(0) As Kepware.ClientAce.OpcDaClient.ItemIdentifier
Dim itemValues As Kepware.ClientAce.OpcDaClient.ItemValue()
Dim maxAge As Integer = 0

OPCItems(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
OPCItems(0).ItemName = "Channel1.Device1.Tag1" 'This is a ramping tag from the simdemo
project
OPCItems(0).ClientHandle = 1
OPCItems(0).DataType = System.Type.GetType("System.UInt16") 'Set the type to VT_Empty and
let the server return the revised type
Try
' Call Connect API method
daServerMgt.Connect(_
url, _
clientHandle, _
connectInfo, _
connectFailed)

www.ptc.com

65

ClientAce

' Check result
If connectFailed = True Then
Console.WriteLine("Connect failed.")
Else
Console.WriteLine("Connection to Server Succeeded.")
End If

Catch ex As Exception
Console.WriteLine("Connect exception. Reason: " & ex.Message)
End Try

'Display a console prompt
If connectFailed = True Then
Console.WriteLine(vbCrLf & "Hit 'Q' to close console")
Else
Console.WriteLine(vbCrLf & "Hit 'R' to Read a value from the server" & vbCrLf & "Hit 'Q' to
Disconnect and Exit.")
End If

Do
Console.WriteLine(vbCrLf & "Ready:")
cki = Console.ReadKey()

If cki.Key = ConsoleKey.R Then
'Try to read the initialized item
Try
daServerMgt.Read(maxAge, OPCItems, itemValues)

'Add code to handle the read response itemvalues

If (OPCItems(0).ResultID.Succeeded And itemValues(0).Quality.IsGood) Then
Console.WriteLine(vbCrLf & "Read value of: {0}", itemValues(0).Value.ToString)
Else
Console.WriteLine(vbCrLf & "Read Failed with resuilt: {0}", OPCItems(0).ResultID.Description)
End If

Catch ex As Exception
'Handle the read exaception
Console.WriteLine("Sync read failed with exception " & ex.Message)
End Try
End If
Loop While cki.Key < > ConsoleKey.Q

If daServerMgt.IsConnected Then

www.ptc.com

66

ClientAce

daServerMgt.Disconnect()
End If
End Sub

End Module

[C#]

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Kepware.ClientAce.OpcDaClient;

namespace Simple_CS_Console_Application_VS_2010_13
{

class Program
{

static void Main(string[] args)
{
//Initialize the server object
Kepware.ClientAce.OpcDaClient.DaServerMgt DAserver = new
Kepware.ClientAce.OpcDaClient.DaServerMgt();

//Initialize the connection info class
Kepware.ClientAce.OpcDaClient.ConnectInfo connectInfo = new
Kepware.ClientAce.OpcDaClient.ConnectInfo();
bool connectFailed;
string url = "opcda://localhost/Kepware.KEPServerEX.V5/{B3AF0BF6-4C0C-4804-A122-
6F3B160F4397}";

int clientHandle = 1;

// Initialize the connect info object data
connectInfo.LocalId = "en";

www.ptc.com

67

ClientAce

connectInfo.KeepAliveTime = 5000;
connectInfo.RetryAfterConnectionError = true;
connectInfo.RetryInitialConnection = true;
connectInfo.ClientName = "Demo ClientAce C-Sharp Console Application";

//Initialize the key input variable
ConsoleKeyInfo cki;

//Create an OPC Identifier Object and Data
Kepware.ClientAce.OpcDaClient.ItemIdentifier[] OPCItems = new
Kepware.ClientAce.OpcDaClient.ItemIdentifier[1];
Kepware.ClientAce.OpcDaClient.ItemValue[] OPCItemValues = null;
int maxAge = 0;

OPCItems[0] = new Kepware.ClientAce.OpcDaClient.ItemIdentifier();
OPCItems[0].ItemName = "Channel1.Device1.Tag1";
OPCItems[0].ClientHandle = 1;

//Try the server connection
try
{
DAserver.Connect(url, clientHandle, ref connectInfo, out connectFailed);
// Check result

if (connectFailed)
{
Console.WriteLine("Connect failed.");
}
else
{
Console.WriteLine("Connected to Server Succeeded.");
}
}
catch (Exception ex)
{
Console.WriteLine("Connect exception. Reason: {0}", ex);
}

//Display Console Prompt
if (DAserver.IsConnected == false)
{
Console.WriteLine(" \r\nHit 'Q' to close console");
}
else

www.ptc.com

68

ClientAce

{
Console.WriteLine("\r\nHit 'R' to Read a value from the server. \r\nHit 'Q' to Disconnect and
Exit.");
}

do
{
cki = Console.ReadKey();
if (cki.Key == ConsoleKey.R)
{
try
{ // Call Read API method

DAserver.Read(maxAge, ref OPCItems, out OPCItemValues);

//add code to handle read response item values
if (OPCItems[0].ResultID.Succeeded & OPCItemValues[0].Quality.IsGood)
{
Console.WriteLine("\r\nRead value of: {0}", OPCItemValues[0].Value.ToString());
}
else
{
Console.WriteLine("\r\nRead Failed with resuilt: {0}", OPCItems[0].ResultID.Description);
}
}
catch (Exception ex)
{
Console.WriteLine("Read exception. Reason: {0}", ex);
}

}
} while (cki.Key != ConsoleKey.Q);

if (DAserver.IsConnected)
{
DAserver.Disconnect();
}
}
}
}

ReadAsync Method
Method

ReadAsync (

www.ptc.com

69

ClientAce

ByVal transactionHandle As Integer,
ByVal maxAge As Integer,
ByRef itemIdentifiers() as Kepware.ClientAce.OpcDaClient.ItemIdentifier

) As/returns Kepware.ClientAce.OpcDaClient.ReturnCode

Properties
The ReadAsync Method is used to asynchronously read items of an OPC Server. The read values will be
returned in the ReadCompleted Event. It is strongly recommended that a Subscription be used if the items
are read cyclically (and the changed data be received in the DataChanged Event).

Tip: The ReadAsynch Method allows more than one item to be read at a time. Because single multi-item
writes can be executed more efficiently than a series of single-item writes, using multi-item writes is
recommended whenever it is possible.

Parameter Use Functionality

maxAge Input

This specifies whether the server should return a value from
cache or from the device for the specified items. If the
freshness of the items cached value is within the maxAge, the
cache value will be returned. Otherwise, the server will obtain
the data from device. The value of maxAge must be in
milliseconds.*

Note: If maxAge is set to 0, the server will always obtain the
data from device.

itemIdentifiers Input/Output

The array of itemIdentifiers is used to specify the OPC items
that should be read. Possible item-specific errors will be
returned in the ResultID object of the associated ItemIdentifier.

The API will also set the ServerHandle property. It is
recommended that ItemIdentifier objects be stored if repeated
reads and writes of the same objects are intended. The API will
make use of the ServerHandle values to optimize OPC calls to
the server.

transactionHandle Input

The API will return the specified handle along with the
requested values in a ReadCompleted event. Thus, a
ReadCompleted event may be correlated with a particular call
to ReadAsync.

*This is only supported for OPC DA 3.0 servers.

Notes:

1. The return code indicates the overall success of the call. If this code indicates an item-specific error
(such as ITEMERROR, QUALITYNOTGOOD, or ITEMANDQUALITYERROR), each of the ReturnID objects
should be examined to determine which items could not be read and why. In the event that the
function cannot satisfy the request (due to invalid arguments or unexpected errors), an exception will
be thrown. For more information on Return Value:ReturnCode, refer to ReturnCode Enumeration.

www.ptc.com

70

ClientAce

2. If a particular data type is desired, specify "ItemIdentifier.DataType". Because it is a requested type, it
may not be honored. The item's ResultID will indicate if the server was not able to read the item due
to an unsupported data type.

Example Code
These examples read two items: "Channel_1.Device_1.Tag_1" and "Channel_1.Device_1.Tag_2".

[Visual Basic]
' Declare variables
Dim transactionHandle As Integer = 0
Dim maxAge As Integer = 0
Dim itemIdentifiers(1) As Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_1"
itemIdentifiers(0).ClientHandle = 1 ' Assign unique handle
itemIdentifiers(1) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(1).ItemName = "Channel_1.Device_1.Tag_2"
itemIdentifiers(1).ClientHandle = 2 ' Assign unique handle
Dim returnCode As Kepware.ClientAce.OpcDaClient.ReturnCode
Try
' Call ReadAsync API method
returnCode = daServerMgt.ReadAsync(_
transactionHandle, _
maxAge, _
itemIdentifiers)
' Check result
If returnCode <> _
Kepware.ClientAce.OpcDaClient.ReturnCode.SUCCEEDED Then
Console.WriteLine("ReadAsync failed for one or more items")
' Examine ResultID objects for detailed information.
End If
Catch ex As Exception
Console.WriteLine("ReadAsync exception. Reason: " & ex.Message)
End Try

[C#]
// Declare variables
int transactionHandle = 0;
int maxAge = 0;
ItemIdentifier[] itemIdentifiers = new ItemIdentifier[2];
itemIdentifiers[0] = new ItemIdentifier();
itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_1";
itemIdentifiers[0].ClientHandle = 1; // Assign unique handle
itemIdentifiers[1] = new ItemIdentifier();
itemIdentifiers[1].ItemName = "Channel_1.Device_1.Tag_2";
itemIdentifiers[1].ClientHandle = 2; // Assign unique handle
ReturnCode returnCode;

www.ptc.com

71

ClientAce

try
{
// Call ReadAsync API method
returnCode = daServerMgt.ReadAsync(transactionHandle, maxAge, ref itemIdentifiers);
// Check result
if (returnCode != ReturnCode.SUCCEEDED)
{
Console.WriteLine("ReadAsync failed for one or more items");
// Examine ResultID objects for detailed information.
}
}
catch (Exception ex)
{
Console.WriteLine("ReadAsync exception. Reason: {0}", ex);
}

Subscribe Method
Method

Subscribe(
ByVal clientSubscription As Integer,
ByVal active As Boolean,
ByVal updateRate As Integer,
ByRef revisedUpdateRate As Integer,
ByVal deadband As Single,
ByRef itemIdentifiers() As Kepware.ClientAce.OpcDaClient.ItemIdentifier,
ByRef serverSubscription As Integer

) As/returns Kepware.ClientAce.OpcDaClient.ReturnCode

Properties
The Subscribe Method is used to register items for monitoring. The server will continuously scan the
subscribed items at the specified update rate and notify the ClientAce API when any item's values or quality
changes. The ClientAce API will relay this information to the client application through a DataChanged Event.
This relieves the client of having to make continuous calls to Read or ReadAsync to poll a set of items, and
can greatly improve the performance of the client application and server.

Note: The server will send an initial update for all items added to an active subscription.

Parameter Use Functionality

clientSubscription* Input

This allows a meaningful handle to be assigned to each subscription.
This value will be returned in each DataChanged event. It provides a
way to indicate the subscription for which the data update is
intended.

active Input

This is used to create the subscription as active or inactive. The
server will scan the items in a subscription only when the
subscription is active. The active state may be changed at any time
with the SubscriptionModify Method. The subscription active state
can be used to optimize the application by signaling the server to

www.ptc.com

72

ClientAce

stop scanning items that are not currently of interest.

updateRate Input

This allows the rate at which the server scans the subscribed items to
be specified. This is a requested rate: the actual update rate will be
decided by the server at the time of this call, but can still vary
depending on demands on the server and data source. Update rate
values must be in milliseconds.

revisedUpdateRate Output
This returns the update rate set by the OPC server, which can be
different from the requested updateRate. The revised update rate
will be in milliseconds.

deadband Input

This specifies the minimum deviation needed for the server to notify
the client of a change of value. The deadband is given a percent (0.0–
100.0) of the range of the value. The range is given by the EU Low
and EU High properties of the item. A deadband of 0.0 will result in
the server notifying the client of all changes in the item's value. The
Subscribe method will throw an exception if an invalid deadband
value is specified.

itemIdentifiers Input/Output
The array of itemIdentifiers is used to specify the OPC items that
should be added to the subscription.

serverSubscription Output

The API will assign a unique handle for each subscription. This handle
is returned through this parameter and should be stored for later
use. The server subscription handle must be specified when
modifying or canceling a subscription.

*It is up to the developer to ensure that each clientSubscription number is unique.

Notes:

1. The return code indicates the overall success of the call. If this code indicates an item-specific error
(such as ITEMERROR), each of the ReturnID objects should be examined to determine which items
could not be added to the subscription and why. The return code will also indicate if the requested
update rate is not supported by the server. In the event that the function cannot satisfy the request
(due to invalid arguments or unexpected errors), an exception will be thrown. For more information
on Return Value:Return Code, refer to ReturnCode Enumeration.

2. For the server to return item values with a particular data type, that particular type must be
requested with the ItemIdentifier.DataType property. The ResultID will indicate if the server is able to
provide the value as the requested type. If the requested type cannot be provided, the values will be
sent in their canonical (default) data type.

Example Code
These examples show how to create a new subscription for the two items "Channel_1.Device_1.Tag_1" and
"Channel_1.Device_1.Tag_2".

[Visual Basic]
' Declare variables
Dim clientSubscription As Integer = 1
Dim active As Boolean = True
Dim updateRate As Integer = 500
Dim revisedUpdateRate As Integer

www.ptc.com

73

ClientAce

Dim deadband As Single = 0
Dim itemIdentifiers(1) As Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_1"
itemIdentifiers(0).ClientHandle = 1 ' Assign unique handle
itemIdentifiers(1) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(1).ItemName = "Channel_1.Device_1.Tag_2"
itemIdentifiers(1).ClientHandle = 2 ' Assign unique handle
Dim serverSubscription As Integer
Try
' Call Subscribe API method
daServerMgt.Subscribe(_
clientSubscription, active, updateRate, _
revisedUpdateRate, deadband, itemIdentifiers, serverSubscription)
' Check results
Dim item As Kepware.ClientAce.OpcDaClient.ItemIdentifier
For Each item In itemIdentifiers
If item.ResultID.Succeeded = False Then
Console.WriteLine("Subscribe failed for item: " & item.ItemName)
End If
Next
Catch ex As Exception
Console.WriteLine("Subscribe exception. Reason: " & ex.Message)
End Try

[C#]
// Declare variables
int clientSubscription = 1;
bool active = true;
int updateRate = 500;
int revisedUpdateRate;
float deadband = 0;
ItemIdentifier[] itemIdentifiers = new ItemIdentifier[2];
itemIdentifiers[0] = new ItemIdentifier();
itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_1";
itemIdentifiers[0].ClientHandle = 1; // Assign unique handle
itemIdentifiers[1] = new ItemIdentifier();
itemIdentifiers[1].ItemName = "Channel_1.Device_1.Tag_2";
itemIdentifiers[1].ClientHandle = 2; // Assign unique handle
int serverSubscription;
ReturnCode returnCode;
try
{
// Call Subscribe API method
returnCode = daServerMgt.Subscribe(clientSubscription,
active,
updateRate,
out revisedUpdateRate,

www.ptc.com

74

ClientAce

deadband,
ref itemIdentifiers,
out serverSubscription);
// Check results
foreach (ItemIdentifier item in itemIdentifiers)
{
if (!item.ResultID.Succeeded)
{
Console.WriteLine("Subscribe failed for item {0}",
item.ItemName);
}
}
}
catch (Exception ex)
{
Console.WriteLine("Subscribe exception. Reason: {0}", ex);
}

SubscriptionModify Method
Method

SubscriptionModify(
ByVal serverSubscription As Integer,
ByVal active As Boolean,
ByVal updateRate As Integer,
ByRef revisedUpdateRate As Integer,
ByVal deadband As Single

) As/returns Kepware.ClientAce.OpcDaClient.ReturnCode
SubscriptionModify (

ByVal serverSubscription As Integer,
ByVal active As Boolean

) As/returns Kepware.ClientAce.OpcDaClient.ReturnCode
SubscriptionModify (

ByVal serverSubscription As Integer,
ByVal updateRate As Integer,
ByRef revisedUpdateRate As Integer

) As/returns Kepware.ClientAce.OpcDaClient.ReturnCode
SubscriptionModify (

ByVal serverSubscription As Integer,
ByVal deadband As Single

) As/returns Kepware.ClientAce.OpcDaClient.ReturnCode

Properties
The SubscriptionModify Method is used to modify the properties of an existing subscription created with the
Subscribe Method. There are three overloads available to change the active UpdateRate and Deadband
subscription properties separately.

www.ptc.com

75

ClientAce

Parameter Use Functionality

serverSubscription Input
This identifies the subscription within the API. This handle was returned by
the Subscribe Method when the subscription was created. The API will
throw an exception if an invalid handle is specified.

active Input
This makes the subscription active or inactive. When the subscription is
active, the server will scan the items and provide data change notifications.

updateRate Input

This specifies the rate at which the server scans the subscribed items. This
is a requested rate: the actual update rate will be decided by the server at
the time of this call, and can vary depending on demands on the server and
data source. Update rate values must be in milliseconds.

revisedUpdateRate Output
This returns the update rate set by the OPC server, which can be different
from the requested updateRate. The revised update rate will be in
milliseconds.

deadband Input

The specifies the minimum deviation needed for the server to notify the
client of a change of value. The deadband is given a percent (0.0–100.0) of
the range of the value. The range is given by the EU Low and EU High
properties of the item. A deadband of 0.0 will result in the server notifying
the client of all changes in the item's value. The API will throw an exception
if an invalid deadband value is specified.

Note: The return code indicates the overall success of the call. If the code indicates an item-specific error
(such as ITEMERROR), each of the ReturnID objects should be examined to determine which items could not
be added to the subscription and why. The return code will also indicate if the requested update rate is not
supported by the server. In the event that the function cannot satisfy the request due to invalid arguments or
unexpected errors, an exception will be thrown. For more information on Return Value:Return Code, refer to
ReturnCode Enumeration.

Example Code
These examples modify the properties of an existing subscription that was created with the Subscribe
Method.

[Visual Basic]
' Declare variables
Dim serverSubscription As Integer ' Assign handle return from Subscribe
Dim active As Boolean = True
Dim updateRate As Integer = 1000
Dim revisedUpdateRate As Integer
Dim deadband As Single = 0
Try
' Call SubscriptionModify API method
daServerMgt.SubscriptionModify(_
serverSubscription, _
active, _
updateRate, _
revisedUpdateRate, _
deadband)
Catch ex As Exception
Console.WriteLine("SubscriptionModify exception. Reason: " & _

www.ptc.com

76

ClientAce

ex.Message)
End Try

[C#]
// Declare variables
int serverSubscription = 0; // Assign handle return from Subscribe
bool active = true;
int updateRate = 1000;
int revisedUpdateRate;
float deadband = 0;
try
{
// Call SubscriptionModify API method
daServerMgt.SubscriptionModify(serverSubscription,
active,
updateRate,
out revisedUpdateRate,
deadband);
}
catch (Exception ex)
{
Console.WriteLine("An error occurred when attempting to modify the subscription: " +
ex.Message);
}

SubscriptionAddItems Method
Method

SubscriptionAddItems(
ByVal serverSubscription As Integer,
ByRef itemIdentifiers() As Kepware.ClientAce.OpcDaClient.ItemIdentifier

) As/returns Kepware.ClientAce.OpcDaClient.ReturnCode

Properties
The SubscriptionAddItems Method is used to add items to an existing subscription created with the
Subscribe method.

Note: The server will send an initial update for all items added to an active subscription.

Parameter Use Functionality

serverSubscription Input

This identifies the subscription within the API. This handle was
returned by the Subscription method when the subscription was
created. The API will throw an exception if an invalid handle is
specified.

itemIdentifiers Input/Output
The array itemIdentifiers specifies the OPC items that should be
added to the subscription.

Notes:

www.ptc.com

77

ClientAce

1. The return code indicates the overall success of the call. If this code indicates an item-specific error
(such as ITEMERROR), each of the ReturnID objects should be examined to determine which items
could not be added to the subscription and why. In the event that the function cannot satisfy the
request due to invalid arguments or unexpected errors, an exception will be thrown. For more
information on Return Value:Return Code, refer to ReturnCode Enumeration.

2. For the server to return item values with a particular data type, that particular type must be
requested with the ItemIdentifier.DataType property. The ResultID will indicate if the server is able to
provide the value as the requested type. If the requested type cannot be provided, the values will be
sent in their canonical (default) data type.

Example Code
These examples add the items "Channel_1.Device_1.Tag_3" and "Channel_1.Device_1.Tag_4" to an existing
subscription, created with the Subscribe method.

[Visual Basic]
' Declare variables
' Assign handle return from Subscribe
Dim serverSubscription As Integer
Dim itemIdentifiers(1) As Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_3"
itemIdentifiers(0).ClientHandle = 3 ' Assign unique handle
itemIdentifiers(1) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(1).ItemName = "Channel_1.Device_1.Tag_4"
itemIdentifiers(1).ClientHandle = 4 ' Assign unique handle
Try
' Call SubscriptionAddItems API method
daServerMgt.SubscriptionAddItems(_
serverSubscription, _
itemIdentifiers)
' Check item results
Dim item As Kepware.ClientAce.OpcDaClient.ItemIdentifier
For Each item In itemIdentifiers
If item.ResultID.Succeeded = False Then
Console.WriteLine("SubscriptionAddItems failed for item: " & _
item.ItemName)
End If
Next
Catch ex As Exception
Console.WriteLine("SubscriptionAddItems exception. Reason: " & _
ex.Message)
End Try

[C#]
// Declare variables
// Assign handle return from Subscribe
int serverSubscription = 0;

www.ptc.com

78

ClientAce

ItemIdentifier[] itemIdentifiers = new ItemIdentifier[2];
itemIdentifiers[0] = new ItemIdentifier();
itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_3";
// Assign unique handle
itemIdentifiers[0].ClientHandle = 3;
itemIdentifiers[1] = new ItemIdentifier();
itemIdentifiers[1].ItemName = "Channel_1.Device_1.Tag_4";
// Assign unique handle
itemIdentifiers[1].ClientHandle = 4;
ReturnCode returnCode;
try
{ // Call SubscriptionAddItems API method
returnCode = daServerMgt.SubscriptionAddItems(serverSubscription,
ref itemIdentifiers);
// Check item results
if (returnCode != ReturnCode.SUCCEEDED)
{
foreach (ItemIdentifier item in itemIdentifiers)
{
if (!item.ResultID.Succeeded)
{
Console.WriteLine("SubscriptionAddItems failed for item: {0}", item.ItemName);
}
}
}
}
catch (Exception ex)
{
Console.WriteLine("SubscriptionAddItems exception. Reason: {0}", ex);
}

SubscriptionCancel Method
Method

SubscriptionCancel (
ByVal serverSubscription As Integer

) As/returns Kepware.ClientAce.OpcDaClient.ReturnCode

Properties
The SubscriptionCancel Method is used to cancel an existing subscription created with the Subscribe
Method.

Parameter Use Functionality

serverSubscription Input
This identifies the subscription within the API. This handle was returned by
the Subscribe Method when the subscription was created. The API will throw
an exception if an invalid handle is specified.

www.ptc.com

79

ClientAce

Note: In the event that the function cannot satisfy the request due to invalid arguments or unexpected
errors, an exception will be thrown. For more information on Return Value: Return Code, refer to ReturnCode
Enumeration.

Example Code
[Visual Basic]
' Declare variables
Dim serverSubscription As Integer ' Assign handle return from Subscribe
Try
 daServerMgt.SubscriptionCancel(serverSubscription)
Catch ex As Exception
 Console.WriteLine("SubscriptionCancel exception. Reason: " & _
 ex.Message)
End Try

[C#]
// Declare variables
int serverSubscription = 0; // Assign handle return from Subscribe
try
{
 // Call SubscriptionCancel API method
 daServerMgt.SubscriptionCancel(serverSubscription);
}
catch (Exception ex)
{
 Console.WriteLine("SubscriptionCancel exception. Reason: {0}", ex);
}

SubscriptionRemoveItems Method
Method

SubscriptionRemoveItems (
ByVal serverSubscription As Integer,
ByRef itemIdentifiers() As Kepware.ClientAce.OpcDaClient.ItemIdentifier

) As/returns Kepware.ClientAce.OpcDaClient.ReturnCode

Properties
The SubscriptionRemoveItems Method removes items from an existing subscription that was created with
the Subscribe Method.

Parameter Use Functionality

serverSubscription Input

This identifies the subscription within the API. This handle was
returned by the Subscribe Method when the subscription was
created. The API will throw an exception if an invalid handle is
specified.

itemIdentifiers Input/Output
The array itemIdentifiers specifies the OPC items that should be
removed from the Subscription.

www.ptc.com

80

ClientAce

Note: The return code indicates the overall success of the call. If the code indicates an item-specific error
(such as ITEMERROR), each of the ReturnID objects should be examined to determine which items could not
be removed from the subscription and why. In the event that the function cannot satisfy the request due to
invalid arguments or unexpected errors, an exception will be thrown. For more information on Return
Value:Return Code, refer to ReturnCode Enumeration.

Example Code
These examples remove the items "Channel_1.Device_1.Tag_1" and "Channel_1.Device_1.Tag_2" from an
existing subscription that was created with the Subscribe method.

[Visual Basic]
' Declare variables
Dim serverSubscription As Integer ' Assign handle return from Subscribe
Dim itemIdentifiers(1) As Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_3"
itemIdentifiers(0).ClientHandle = 3 ' Assign unique handle
itemIdentifiers(1) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(1).ItemName = "Channel_1.Device_1.Tag_4"
itemIdentifiers(1).ClientHandle = 4 ' Assign unique handle
Try
 ' Call SubscriptionRemoveItems API method
 daServerMgt.SubscriptionRemoveItems(_
 serverSubscription, _
 itemIdentifiers)

 ' Check item results
 Dim item As Kepware.ClientAce.OpcDaClient.ItemIdentifier
 For Each item In itemIdentifiers
 If item.ResultID.Succeeded = False Then
 Console.WriteLine(_
 "SubscriptionRemoveItems failed for item: " & _
 item.ItemName)
 End If
 Next
Catch ex As Exception
 Console.WriteLine("SubscriptionRemoveItems exception. Reason: " & _
 ex.Message)
End Try

[C#]
// Declare variables
int serverSubscription = 0; // Assign handle return from Subscribe
ItemIdentifier[] itemIdentifiers = new ItemIdentifier[2];
itemIdentifiers[0] = new ItemIdentifier();
itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_3";
itemIdentifiers[0].ClientHandle = 3; // Assign unique handle
itemIdentifiers[1] = new ItemIdentifier();

www.ptc.com

81

ClientAce

itemIdentifiers[1].ItemName = "Channel_1.Device_1.Tag_4";
itemIdentifiers[1].ClientHandle = 4; // Assign unique handle
ReturnCode returnCode;
try
{ // Call SubscriptionRemoveItems API method
 returnCode = daServerMgt.SubscriptionRemoveItems(serverSubscription,

ref itemIdentifiers);
 // Check item results
 if (returnCode != ReturnCode.SUCCEEDED)
{
 foreach (ItemIdentifier item in itemIdentifiers)
{
 if (!item.ResultID.Succeeded)
{

Console.WriteLine("SubscriptionRemoveItems failed for item:
{0}", item.ItemName);

 }
 }
 }
}
catch (Exception ex)
{ Console.WriteLine("SubscriptionRemoveItems exception. Reason: {0}", ex); }

Write Method
Method

Write(
ByRef itemIdentifiers() As Kepware.ClientAce.OpcDaClient.ItemIdentifier,
ByVal itemValues() As Kepware.ClientAce.OpcDaClient.ItemValue

) As Kepware.ClientAce.OpcDaClient.ReturnCode

Properties
The Write Method is used to write one or more values to the OPC server.

Note: Because single multi-item writes can be executed more efficiently than a series of single-item
writes, using multi-item writes is recommended whenever it is possible.

Parameter Use Functionality

itemIdentifiers Input/Output

The array of itemIdentifiers is used to specify the OPC items
that should be written. Possible item-specific errors will be
returned in the ResultID object of the associated ItemIdentifier.

The API will also set the ServerHandle property. It is
recommended that ItemIdentifier objects be stored if repeated
reads and writes of the same objects are intended. The API will
make use of the ServerHandle values to optimize OPC calls to
the server.

itemValues Input
The array itemValues contains the values to be written to the
OPC server.

www.ptc.com

82

ClientAce

Note: The return code indicates the overall success of the call. If this code indicates an item-specific error
(such as ITEMERROR), each of the ReturnID objects should be examined to determine which items could not
be read and why. In the event that the function cannot satisfy the request (due to invalid arguments or
unexpected errors) an exception will be thrown. For more information on Return Value: Return Code, refer to
ReturnCode Enumeration.

Example Code
These examples write the value "111" to tag "Channel_1.Device_1.Tag_1", and "222" to tag "Channel_
1.Device_1.Tag_2".

[Visual Basic]
Imports Kepware.ClientAce.OpcDaClient

Module Module1

Sub Main()
' Declare variables
'Create server management object
Dim daServerMgt As New Kepware.ClientAce.OpcDaClient.DaServerMgt
'Create a URL for the server connection this could be an OPC DA or UA connection
Dim url As String = _
"opcda://localhost/Kepware.KEPServerEX.V5/{B3AF0BF6-4C0C-4804-A122-6F3B160F4397}"
'Create a unique id for the client connection
Dim clientHandle As Integer = 1
'Create and configure the connection infomration object and data
Dim connectInfo As New Kepware.ClientAce.OpcDaClient.ConnectInfo
connectInfo.LocalId = "en"
connectInfo.KeepAliveTime = 5000
connectInfo.RetryAfterConnectionError = True
connectInfo.RetryInitialConnection = True
connectInfo.ClientName = "Demo ClientAce VB.Net Console Application"
Dim connectFailed As Boolean

'Create variable for keyboard input
Dim cki As ConsoleKeyInfo

'Create an OPC Item Identifier Object and Data
Dim OPCItems(0) As Kepware.ClientAce.OpcDaClient.ItemIdentifier
Dim itemValues As Kepware.ClientAce.OpcDaClient.ItemValue()
Dim OPCWriteValue(0) As Kepware.ClientAce.OpcDaClient.ItemValue

www.ptc.com

83

ClientAce

Dim maxAge As Integer = 0

OPCItems(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
OPCItems(0).ItemName = "Channel1.Device1.Tag2" 'This is a ramping tag from the simdemo
project
OPCItems(0).ClientHandle = 1
OPCItems(0).DataType = System.Type.GetType("System.UInt16") 'Set the type to VT_Empty and
let the server return the revised type

'Define the randoem varaible for the write value
Dim rndValue As New Random

Try
' Call Connect API method
daServerMgt.Connect(_
url, _
clientHandle, _
connectInfo, _
connectFailed)

' Check result
If connectFailed = True Then
Console.WriteLine("Connect failed.")
Else
Console.WriteLine("Connection to Server Succeeded.")
End If

Catch ex As Exception
Console.WriteLine("Connect exception. Reason: " & ex.Message)
End Try

'Display a console prompt
If connectFailed = True Then
Console.WriteLine(vbCrLf & "Hit 'Q' to close console")
Else
Console.WriteLine(vbCrLf & "Hit 'R' to Read a value from the server")
Console.WriteLine(vbCrLf & "Hit 'W' to Write a Random Value to the Server.")
Console.WriteLine(vbCrLf & "Hit 'Q' to Disconnect and Exit.")
End If

Do
Console.WriteLine(vbCrLf & "Ready:")
cki = Console.ReadKey()

www.ptc.com

84

ClientAce

If cki.Key = ConsoleKey.R Then
'Try to read the initialized item
Try
daServerMgt.Read(maxAge, OPCItems, itemValues)

'Add code to handle the read response itemvalues

If (OPCItems(0).ResultID.Succeeded And itemValues(0).Quality.IsGood) Then
Console.WriteLine(vbCrLf & "Read value of: {0}", itemValues(0).Value.ToString)
Else
Console.WriteLine(vbCrLf & "Read Failed with resuilt: {0}", OPCItems(0).ResultID.Description)
End If

Catch ex As Exception
'Handle the read exception
Console.WriteLine("Sync read failed with exception " & ex.Message)
End Try
End If

If cki.Key = ConsoleKey.W Then
'initialize the value to be written
OPCWriteValue(0) = New Kepware.ClientAce.OpcDaClient.ItemValue
OPCWriteValue(0).Value = rndValue.Next(0, 65535)

'Try to write the value
Try
daServerMgt.Write(OPCItems, OPCWriteValue)

If (OPCItems(0).ResultID.Succeeded) Then
Console.WriteLine(vbCrLf & "Write succeeded. Value Written is: {0}", OPCWriteValue
(0).Value.ToString)
Else
Console.WriteLine(vbCrLf & "Write Failed with result: {0}", OPCItems(0).ResultID.Description)
End If
Catch ex As Exception
'Handle the write exception
Console.WriteLine("Sync write failed with exception " & ex.Message)
End Try
End If
Loop While cki.Key <> ConsoleKey.Q

If daServerMgt.IsConnected Then
daServerMgt.Disconnect()
End If
End Sub

www.ptc.com

85

ClientAce

End Module

[C#]

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Kepware.ClientAce.OpcDaClient;

namespace Simple_CS_Console_Application_VS_2010_13
{

class Program
{

static void Main(string[] args)
{
//Initialize the server object
Kepware.ClientAce.OpcDaClient.DaServerMgt DAserver = new
Kepware.ClientAce.OpcDaClient.DaServerMgt();

//Initialize the connection info class
Kepware.ClientAce.OpcDaClient.ConnectInfo connectInfo = new
Kepware.ClientAce.OpcDaClient.ConnectInfo();
bool connectFailed;
string url = "opcda://localhost/Kepware.KEPServerEX.V5/{B3AF0BF6-4C0C-4804-A122-
6F3B160F4397}";

int clientHandle = 1;

// Initialize the connect info object data
connectInfo.LocalId = "en";
connectInfo.KeepAliveTime = 5000;
connectInfo.RetryAfterConnectionError = true;
connectInfo.RetryInitialConnection = true;
connectInfo.ClientName = "Demo ClientAce C-Sharp Console Application";

//Initialize the key input variable
ConsoleKeyInfo cki;

www.ptc.com

86

ClientAce

//Create an OPC Identifier Object and Data
Kepware.ClientAce.OpcDaClient.ItemIdentifier[] OPCItems = new
Kepware.ClientAce.OpcDaClient.ItemIdentifier[1];
Kepware.ClientAce.OpcDaClient.ItemValue[] OPCItemValues = null;
int maxAge = 0;

OPCItems[0] = new Kepware.ClientAce.OpcDaClient.ItemIdentifier();
OPCItems[0].ItemName = "Channel1.Device1.Tag2";
OPCItems[0].ClientHandle = 1;

WriteAsync Method
Method

WriteAsync(
ByVal transactionHandle As Integer,
ByRef itemIdentifiers() As kepware.ClientAce.OpcDaClient.ItemIdentifier,
ByVal itemValues() As kepware.ClientAce.OpcDaClient.ItemValue

) As Kepware.ClientAce.OpcDaClient.ReturnCode

Properties
The WriteAsync Method is used to asynchronously write items to an OPC Server. The write values will be
returned in the WriteCompleted Event.

Note: More than one item may be written at a time with the WriteAsync method. Because single multi-
item writes can be executed more efficiently than a series of single-item writes, using multi-item writes is
recommended whenever it is possible.

Parameter Use Functionality

transactionHandle Input
The API will return the specified handle along with the requested
values in a WriteCompleted Event. Thus, a WriteCompleted Event can
be correlated with a particular call to WriteAsync.

itemIdentifiers Input/Output

The array of itemIdentifiers is used to specify the OPC items that
should be read. Possible item-specific errors will be returned in the
ResultID object of the associated ItemIdentifier.

The API will also set the ServerHandle property. It is recommended
that ItemIdentifier objects be stored if repeated reads and writes of
the same objects are intended. The API will make use of the
ServerHandle values to optimize OPC calls to the server.

itemValues Input
The array itemValues contains the Values to be written to the OPC
server.

Note: The return code indicates the overall success of the call. If this code indicates an item-specific error
(such as ITEMERROR or ITEMANDQUALITYERROR), each of the ReturnID objects should be examined to
determine which items could not be read and why. In the event that the function cannot satisfy the request

www.ptc.com

87

ClientAce

(due to invalid arguments or unexpected errors), an exception will be thrown. For more information on
Return Value:Return Code, refer to ReturnCode Enumeration.

Example Code
These examples write the value "111" to tag "Channel_1.Device_1.Tag_1", and "222" to tag "Channel_
1.Device_1.Tag_2".

[Visual Basic]
' Declare variables
Dim transactionHandle As Integer = 0
Dim itemIdentifiers(1) As Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(0) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(0).ItemName = "Channel_1.Device_1.Tag_1"
itemIdentifiers(0).ClientHandle = 1 ' Assign unique handle
itemIdentifiers(1) = New Kepware.ClientAce.OpcDaClient.ItemIdentifier
itemIdentifiers(1).ItemName = "Channel_1.Device_1.Tag_2"
itemIdentifiers(0).ClientHandle = 2 ' Assign unique handle
Dim itemValues(1) As Kepware.ClientAce.OpcDaClient.ItemValue
itemValues(0) = New Kepware.ClientAce.OpcDaClient.ItemValue
itemValues(0).Value = "111"
itemValues(1) = New Kepware.ClientAce.OpcDaClient.ItemValue
itemValues(1).Value = "222"
Dim returnCode As Kepware.ClientAce.OpcDaClient.ReturnCode
Try
 ' Call WriteAsync API method
returnCode = daServerMgt.WriteAsync(transactionHandle, itemIdentifiers, _

 itemValues)
 ' Check result
 If returnCode <> _
 Kepware.ClientAce.OpcDaClient.ReturnCode.SUCCEEDED Then
 Console.WriteLine("Write request failed for one or more items")
‘ Examine ResultID objects for detailed information.
 End If
Catch ex As Exception
 Console.WriteLine("WriteAsync exception. Reason: " & ex.Message)
End Try

[C#]
// Declare variables
int transactionHandle = 0;
ItemIdentifier[] itemIdentifiers = new ItemIdentifier[2];
itemIdentifiers[0] = new ItemIdentifier();
itemIdentifiers[0].ItemName = "Channel_1.Device_1.Tag_1";
itemIdentifiers[0].ClientHandle = 1; // Assign unique handle

www.ptc.com

88

ClientAce

itemIdentifiers[1] = new ItemIdentifier();
itemIdentifiers[1].ItemName = "Channel_1.Device_1.Tag_2";
itemIdentifiers[1].ClientHandle = 2; // Assign unique handle
ItemValue[] itemValues = new ItemValue[2];
itemValues[0] = new ItemValue();
itemValues[0].Value = "111";
itemValues[1] = new ItemValue();
itemValues[1].Value = "222";
ReturnCode returnCode;
try
{ // Call WriteAsync API method
 returnCode = daServerMgt.WriteAsync(transactionHandle, ref itemIdentifiers, itemValues);
 // Check item results
 if (returnCode != ReturnCode.SUCCEEDED)
{ Console.WriteLine("Write request failed for one or more items");
 // Examine ResultID objects for detailed information.
 }
}
catch (Exception ex)
{ Console.WriteLine("WriteAsync exception. Reason: {0}", ex); }

IsConnected Property
Property

IsConnected As Boolean

Properties
The IsConnected Property is used to check if the client application has successfully called the Connect
Method. It does not necessarily indicate whether ClientAce is connected to the server. For example, such a
property would remain true even after a connection has failed and ClientAce is in the process of
reconnecting. To test the ClientAce to server connection state, use the ServerState Property. To monitor
the server connection state, implement the ServerStateChanged Event handler.

Value Description

True The client is connected to ClientAce.

False The client is not connected to ClientAce.

ServerState Property
Property

ServerStateAs Kepware.ClientAce.OpcDaClient.ServerState

Properties
The ServerState Property is used to determine the status of the server connection.

Value Description

www.ptc.com

89

ClientAce

ServerState*
This describes the current connection state between the ClientAce API and the OPC
Server.

*For more information, refer to ServerState Enumeration.

ClientAceDA_Junction
The ClientAce DA Junction is a customized .NET control that allows VB.NET or C# programmers to easily link
data from OPC DA and OPC UA servers to WinForm controls through a simple drag and drop interface. The
ClientAce .NET API is recommended when building advanced custom OPC client applications that require
more control over OPC functionality. Features of the ClientAce DA Junction include the following:

l No required detailed knowledge about OPC Data Access interfaces.

l Management of the connection handling procedure for one or multiple OPC servers (including
connection establishment, connection monitoring, and reconnection in case of errors).

l Conversion of OPC data from different OPC Data Access interfaces into .NET data types.

l Support for .NET WinForm controls available in Visual Studio and from most Third-Party vendors.

ClientAceDA_Junction Properties
Although these properties can only be set at the time of design, they are accessible as Read Only properties
at Runtime.

Property
Data
Type

Description

DefaultUpdateRate Integer
The default update rate set in the DA_Junction Object. This is the
update rate used on all items unless overridden in the individual
item settings.

ShowTimestampInTooltip Boolean This shows the timestamp of the OPC value in the tooltip.

BackColorQualityBad
System
Color

The back color of the connected control when the quality of the OPC
value is bad.

BackColorError
System
Color

The back color of the connected control when the ResultID of the
OPC item did not succeed.

DisconnectAllServers Method
This method disconnects all servers in the DA Junction Object.

[DisconnectAllServers()

ReconnectAllServers Method
This method reconnects all servers in the DA Junction Object.

ReconnectAllServers()

Example Code
[Visual Basic]
Private Sub btnDisconnect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs _
) Handles btnDisconnect.Click
Try

www.ptc.com

90

ClientAce

‘Disconnects all servers that are currently connected in the DA_Junction
ClientAceDA_Junction1.DisconnectAllServers()
Catch ex As Exception
MessageBox.Show("Received Exception: " & ex.Message)
End Try
End Sub
Private Sub btnReconnect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs _
) Handles btnReconnect.Click
Try
‘Reconnects all servers that are currently connected in the DA_Junction
ClientAceDA_Junction1.ReconnectAllServers()
Catch ex As Exception
MessageBox.Show("Received Exception: " & ex.Message)
End Try
End Sub

[C#]
private void btnDisconnect_Click(object sender, EventArgs e)
{
try
{
//Disconnects all servers that are currently connected in the DA_Junction
ClientAceDA_Junction1.DisconnectAllServers();
}
catch (Exception ex)
{
MessageBox.Show ("Received Exception: " + ex.Message);
}
}
private void btnReconnect_Click(object sender, EventArgs e)
{
try
{
//Reconnects all servers that are currently connected in the DA_Junction
ClientAceDA_Junction1.ReconnectAllServers();
}
catch (Exception ex)
{
MessageBox.Show("Received Exception: " + ex.Message);
}
}

www.ptc.com

91

ClientAce

Project Setup
For more information on DA Junction project setup, select a link from the list below.

DA Junction Configuration Window
A Sample Project Using DA Junction with VB.NET or C#
Item Update Rate
Disabling DataChange While the Control Has Focus

DA Junction Configuration Window
The DA Junction Configuration Window is divided into three main panes. To jump to a specific pane, select a
link from the list below.

OPC Items
Controls
Connections Pane
Connection Settings

OPC Items
The OPC Items pane displays the items from an OPC server project and shows where the OPC Servers are
connected. The DA Junction can connect to OPC DA and OPC UA servers. Users can add servers to this
control in three different ways: through the Server Browser, through OPC DA, and through OPC UA.

Server Browser
The Server Browser tab allows users to browse for Enumerated OPC DA Servers or OPC UA servers that
have been registered to a Local UA Discovery server.

www.ptc.com

92

ClientAce

OPC DA
The OPC DA tab allows users to specify a Hostname and ProgramID for servers that may not be enumerated
on a PC.

OPC UA
If there are no Discovery Servers available, the Endpoint URL and Application Name can be specified
instead. Users can also specify the Security and Authentication settings as configured in the UA Server.

www.ptc.com

93

ClientAce

Tip: Once connections are made, they will be listed beneath the OPC Items pane. By expanding the server
connections, users can view the server folders that contain OPC Items. Selected items will be placed in
Connections.
For more information, refer to Connections Pane.

Controls
The Controls pane determines which control properties will be displayed. The example below demonstrates
the 6 controls on Form1.

www.ptc.com

94

ClientAce

Note: The example below displays the selections for Show all properties.

Note: The example below displays the selections for Apply property filter located in the Filter dialog.
The Type Filter, which includes a checklist of available data types, is found in the first tab.

Note: The example below displays the selections for Access Filter tab located in the Filter dialog. The
Show Read Only Properties field is unchecked by default because data is usually written from the OPC
server to the property of the user interface control. To write data from the property, check Show Read Only
Properties in the OPC server.

www.ptc.com

95

ClientAce

Note: The example below displays the selections for Property Level tab in the Filter dialog. The default
level is 2. The higher the number is, the greater the level of property detail that will be shown. If the end
node of a given item is at level 2, then only 2 levels will be shown for that item if the property level filter is set
to 2 or higher. Likewise, if the level filter is set to 3, then only 3 levels of property detail will be shown even if
a given item's end node is at level 4 or higher.

Connections Pane
The Connections pane is used to modify the tag state, server name, tag item, and data direction. It can also
be used to modify or set Visual Studio controls and properties (and set triggers).

Direction
Direction specifies whether the Visual Studio control is Read Only, Write Only, or Read/Write. The default
property is shown in bold.

Direction Property Description

Item =>Control Read Only Direction of data is from Item to Control only.

Item <= Control Write Only Direction of data is from Control to Item only.

Item <=> Control Read/Write Data flows in both directions.

www.ptc.com

96

ClientAce

Connection Settings
To access an item's Connection Settings, locate the Settings column and then click Browse.

Note: The Connection Settings window has two tabs: General and Trigger. The General tab is used to
specify the update rate, and determine whether to disable DataChange while the control has focus.

The Trigger tab is used to select the control, browse events, and select an event that will trigger a write to
the OPC tag connected to the control. For more information, refer to Triggers.

A Sample Project Using DA Junction with VB.NET or C#
Microsoft Visual Studio supports many different Third-Party .NET controls that can be connected to OPC tag
items through the Kepware.ClientAce.DA_Junction control library. For more information, refer to the
instructions below.

Important: All referenced controls must be on the local drive. Assemblies that are located on a network
drive should not be referenced, as this will cause the Visual Studio error "Unable to cast object of type
<type> to <type>." This is a limitation of the Microsoft .NET development environment.

www.ptc.com

97

ClientAce

Locating the ClientAceDA Junction Control

1. To start, open the Visual Basic Toolbox, and then locate the ClientAce tab. Verify that the
ClientAceDA_Junction control is listed.

 If the ClientAceDA Junction control is missing, refer to Missing Controls.

Adding VB/C# Controls

1. Add VB/C# Controls to a blank Windows Form.

2. Next, drag and drop the ClientAceDA_Junction control from the Toolbox to the new form. The control
label "ClientAceDA_Junction1" will be displayed.

3. Next, drag and drop three VB/C# Label controls and three TextBox controls onto the form. These
controls are located beneath the Windows Forms tab in the Toolbox.

www.ptc.com

98

ClientAce

4. To change the controls' names and text properties to be more descriptive, open Properties and then
click View.

5. Next, select Properties Window and click once on the Label1 control to select it.

6. In Properties, change the Name to "lblRead".

www.ptc.com

99

ClientAce

7. Then, change the Text property to "ReadVal".

8. Repeat this procedure for all five controls. The changes made to the controls are displayed in the
table below.

www.ptc.com

100

ClientAce

Default Control Name New Name Property New Text Property

Label1 lblRead ReadVal

Label2 lblWriteValue WriteVal

Label3 lblReadWriteValue ReadWriteVal

TextBox1 txtRead *

TextBox2 txtWrite *

TextBox3 txtReadWrite *

*Leave the Text property for the TextBox controls blank, because they will be updated automatically
by the OPC tag items.

Invoking the ClientAceDA Junction Configuration

1. Next, invoke the ClientAceDA Junction configuration. Then, click on the ClientAceDA_Junction1 control
to select the ClientAceDA_Junction1 property.

Tip: In ClientAce V4.0, users can also open the configuration by double-clicking on the DA Junction
Object.

2. In Properties, click to select the ClientAceConfiguration property.

3. Click the Ellipses button to launch the ClientAceDA Junction Configuration window.

4. Use the OPC Items pane to add local and remote servers (and to browse for OPC tag items). To view
the VB/C# controls being displayed, open the Control pane.
For more information, refer to DA Junction Configuration Window.

www.ptc.com

101

ClientAce

Connecting to OPC Servers and Adding Tags

1. Next, double-click on Click to add a server link in the left pane of the window.

2. Expand the nodes Local Machine, Remote Machine, or Custom Remote Machines to select the
server of interest. In this example, "KEPware.OPCSampleServer" is used.

3. Next, browse the OPC server to locate the tags to which the Visual Studio controls can connect. Then,
drag and drop each OPC tag item onto the Visual Studio control.

www.ptc.com

102

ClientAce

Note: For example, drag the "K0" Tag to the txtRead and txtWrite controls. Then, drag the K1 Tag to
the txtReadWrite textbox control. The tag items should then be listed in the Connections grid.

Modifying the Connections Settings
Connections Grid
The Connections grid (located at the bottom of the Configuration Window) is used to modify the tag state,
server name, tag item, data direction, Visual Studio controls, properties, and to set triggers. For more
information, refer to DA Junction Configuration Window.

Direction Property

www.ptc.com

103

ClientAce

Direction determines whether the Visual Studio control is Read Only, Write Only, or Read/Write. For more
information, refer to Connections Pane.

For this example, leave the txtRead control at the default Read Only setting. Then, change the txtReadWrite
control Read/Write, and the txtWrite control to Write Only. For more information, follow the instructions
below.

1. For the txtReadWrite control, click the Direction column. Then, select Item <=> Control from the
drop-down menu.

2. For the txtWrite control, click the Direction column. Then, select Item <= Control from the drop-
down menu.

Note: When the direction is changed to Write Only (<=) or Read/Write (<=>), the item will display a red "X"
as shown in the image below. The red "X" signifies an error: the control has been set to Write Only or
Read/Write but the control does not yet have its write conditions specified. The Triggers property specifies
the conditions for the write procedures. For more information, refer to "Triggers" below.

Triggers

1. To access an item's Trigger property, select the Settings column. Then, click Ellipses.

2. In Connection Settings, select the Trigger tab.

Note: The Trigger tab is used to select the control, to browse events, and to select an event that

www.ptc.com

104

ClientAce

will trigger a write to the OPC tag connected to the control. For example, the txtReadWrite and
txtWrite controls need to have their write conditions specified as follows:

l The txtReadWrite control's KeyDown event triggers writes on the txtReadWrite Visual Studio
control.

l The txtWrite control's KeyDown event triggers writes on the txtWrite Visual Studio control.

Specifying Write Conditions in the Trigger Tab
The following steps must be performed for both the txtReadWrite and the txtWrite controls.

1. To start, select and expand the txtReadWrite control to display its properties.

2. In the Trigger tab, locate the Event drop-down list and then select KeyDown. Alternatively, drag the
KeyDown property and drop it in the Event column.

3. Then, click OK.

4. Next, return to the Configuration Screen and repeat the process for the txtWrite control.

5. To start, select and expand the txtWrite control to display its properties.

6. In the Trigger tab, locate the Event drop-down list and then select KeyDown. Alternatively, drag the
KeyDown property and drop it in the Event column.

www.ptc.com

105

ClientAce

7. Then, click OK.

Note: When applicable, the Condition field will provide a drop-down menu of conditions. For
example, if a control is added with KeyDown in the Event field, the Condition drop-down menu will
display a list of valid keys from which users can choose.

8. To save the changes, click OK at the bottom of the Configuration screen. Then, build and run the
application.

Note: The application will use the associated VB or C# controls to read from and write to the OPC
tags.

www.ptc.com

106

ClientAce

Item Update Rate
There are two update rate settings available in ClientAce: the Global Update Rate and the Item-Level Update
Rate. The default setting is the Global Update Rate.

Global Update Rate
The Global Update rate specifies the default update rate for all items. The default setting is 1000
milliseconds. This setting can be modified through the DefaultUpdateRate property of the DA_Junction
control.

Item-Level Update Rate
Individual DA Junction items' update rates can also be modified. The change will not affect the default update
rates of other controls. For more information, refer to the instructions below.

1. To start, click on the Ellipses button for ClientAceConfiguration. This will launch the Configuration
window.

www.ptc.com

107

ClientAce

2. Next, click in the Settings column. Locate the item whose default rate will be changed, and then click
the associated Ellipses button.

3. In Connection Settings, open the General tab.

www.ptc.com

108

ClientAce

4. In Update Rate, change the value as desired. Then, click OK.

Disabling DataChange While the Control Has Focus
This parameter changes a value in the control and does not allow it to be overwritten by a change from the
OPC server. For more information, refer to the instructions below.

1. To start, locate ClientAceConfiguration. Then, click the Ellipses button to launch the Configuration
window.

2. In the Settings column, locate the item whose properties will be changed. Then, click the associated
Ellipses button.

www.ptc.com

109

ClientAce

3. In Connection Settings, open the General tab.

4. Next, check to enable Disable datachange while control has focus.

5. Then, click OK.

Note: The selected control is now set for the Data Update Pause when it has focus.

www.ptc.com

110

ClientAce

Additional Controls
For more information on ClientAce Browser Controls, select a link from the list below.

ItemBrowser Control Properties
ServerBrowser Control Properties

For more information on KEPServerEX Controls, refer to KEPServerEX Controls.

ItemBrowser Control Properties
The ItemBrowser Control lets users navigate OPC DA and OPC UA servers' address space and display items.
Although these properties can only be set at the time of design, they are accessible as Read Only properties
at runtime.

Property Use
Data
Type

Description

AllowMultipleServers Input Boolean
Indicates if multiple Servers are shown in the
ItemBrowser.

BrowserWidth Input Integer Indicates the width of the Tree View.

Servers Input
OPCUrl
Object

Indicates the Servers currently being used.

ShowAddServerMenuItem Input Boolean
Indicates if the Add Server menu items should be shown
in the server browser pane when right-clicked.

ShowInternalServerBrowser Input Boolean
Indicates if the Internal Server Browser should be shown
at Runtime.

ShowItemList Input Boolean Indicates if the Item List should be shown at Runtime.

ShowItemNameAndPath Input Boolean
Indicates if the Item Name and Path should be shown in
the Item List at Runtime.

ShowItemsInTree Input Boolean
Indicates if the Items should be shown in the Browser
Tree List at Runtime.

ShowPropertiesInBrackets Input Boolean
Indicates if the Item Properties should be shown in
brackets beside the Item in the Browser Tree List at
Runtime.

ShowPropertiesInTree Input Boolean
Indicates if the Item Properties should be shown in the
Browser Tree List at Runtime.

ShowPropertyList Input Boolean Indicates if the Property List should be shown at Runtime.

SwitchTabPages Input Boolean
Indicates if the pages should switch automatically from
the Item List to the Properties List when an item is
selected in the Tree View List at Runtime.

AddServer Method
This method has two versions. The method below is for a string, and adds an OPC server to the Tree View of
the ItemBrowser.

AddServer(ByVal URL as String)

www.ptc.com

111

ClientAce

The method below uses the URL object for OPC UA connections. This allows a UA server to be added with
certificate and authentication information.

AddServer(byVal opcUrl As Kepware.ClientAce.BrowseControls.OpcUrl)

Connect Method
This method has two versions. The method below initiates a connect to the specified server in the
ItemBrowser.

Connect(ByVal URL as String)

The method below is used for OPC UA connections.

Connect(ByVal opcUrlServer As Kepware.ClientAce.BrowseControls.OpcUrl)

ConnectAll Method
This method initiates a connection to all the servers currently added in the ItemBrowser.

ConnectAll()

Disconnect Method
This method has two versions. The method below initiates a disconnect to the specified server in the
ItemBrowser.

Disconnect(ByVal URL as String)

The method below is used for OPC UA connections.

Disconnect(ByVal opcUrlServer As Kepware.ClientAce.BrowseControls.OpcUrl)

DisconnectAll Method
This method disconnects all servers currently connected in the ItemBrowser.

DisconnectAll()

DisconnectSelectedServer Method
This method disconnects the server currently being used. The Servernode or Childnode must be selected.

DisconnectSelectedServer()

GetSelectedItems Method
This method returns the selected items as an array of Browse Controls OPC DA items. If no item is selected,
the length of the array will be 0.

GetSelectedItems() as Kepware.ClientAce.BrowseControls.OpcDaItem

ResetItemBrowser Method
This method disconnects all connected servers and clears the Tree View and lists.

www.ptc.com

112

ClientAce

ResetItemBrowser()

ItemDoubleClicked Event
This event shows that an OPC item in the browser was double-clicked.

ItemDoubleClicked(
ByVal Sender as Object,
ByVal item as Kepware.ClientAce.BrowseControls.OpcDaItem)
) Handles ClientAceItemBrowser1.ItemDoubleClicked

ItemSelected Event
This event shows that one or more OPC items are selected in the ItemBrowser.

ItemSelected(ByVal sender as Object, ByVal ItemCount as Integer
) Handles ClientAceItemBrowser1.ItemSelected

ServerAdded Event
This event shows than an OPC Server was added to the control.

ServerAdded(sender As Object, args As
Kepware.ClientAce.BrowseControls.ItemBrowserEventArgs) Handles
ClientAceItemBrowser1.ServerAdded

ServerRemoved Event
This event shows than an OPC Server was removed from the control.

ServerRemoved(sender As Object, args As
Kepware.ClientAce.BrowseControls.ItemBrowserEventArgs) Handles
ClientAceItemBrowser1.ServerRemoved

Parameter Use Functionality

URL Input

The URL of the OPC servers.

Note: The syntax of the URL that uniquely identifies a server must follow this
format (except for OPC XML-DA):

[OpcSpecification]://[Hostname]/[ServerIdentifier]

OpcSpecification: Selects the OPC Specification to be used.

l "opcda" for OPC Data Access 2.05A and later (COM).

l Hostname: Name or IP Address of the machine that hosts the OPC server.
For the local machine, "localhost" must be used (127.0.0.1).

l ServerIdentifier: Identifies the OPC server on the specified host.

l OPC DA (COM) – [ProgID]/[optional ClassID]

www.ptc.com

113

ClientAce

Note: For OPC DA servers, the API will attempt to connect using the ClassID first.
If the ClassID is not given (or is found to be invalid), the API will attempt to connect
using the ProgID.

OPC DA Example
opcda://localhost/Kepware.KEPServerEX.V5
opcda://127.0.0.1/Kepware.KEPServerEX.V5/{B3AF0BF6-4C0C-4804-A122-
6F3B160F4397}

OPC XML-DA Example
http://127.0.0.1/Kepware/xmldaservice.asp

OPC UA Example
opc.tcp://127.0.0.1:49320

Example Code
[Visual Basic]
Private Sub Form3_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs _
) Handles MyBase.Load

 Try
‘Display the current configuration of the
CheckBox1.Checked = ClientAceItemBrowser1.ShowAddServerMenuItem
CheckBox2.Checked = ClientAceItemBrowser1.ShowInternalServerBrowser
CheckBox3.Checked = ClientAceItemBrowser1.ShowItemList
CheckBox4.Checked = ClientAceItemBrowser1.ShowItemNameAndPath
CheckBox5.Checked = ClientAceItemBrowser1.ShowItemsInTree
CheckBox6.Checked = ClientAceItemBrowser1.ShowPropertiesInBrackets
CheckBox7.Checked = ClientAceItemBrowser1.ShowPropertiesInTree
CheckBox8.Checked = ClientAceItemBrowser1.ShowPropertyList
CheckBox9.Checked = ClientAceItemBrowser1.SwitchTabpages

'Server to be used in the control
ClientAceItemBrowser1.AddServer(_
"opcda://localhost/KEPware.OPCSampleServer/{6E617113-FF2D-11D2-8087-00105AA8F840}

")
ClientAceItemBrowser1.Connect(_
"opcda://localhost/KEPware.OPCSampleServer/{6E617113-FF2D-11D2-8087-00105AA8F840}

")

Catch ex As Exception
MessageBox.Show("Received Exception: " & ex.Message)
End Try
End Sub

Private Sub ClientAceItemBrowser1_ItemDoubleClicked(_
ByVal sender As Object, _

www.ptc.com

114

ClientAce

ByVal item As Kepware.ClientAce.BrowseControls.OpcDaItem _
) Handles ClientAceItemBrowser1.ItemDoubleClicked
Try
‘Add the item to the projects subscribed items.
mAdditems(item)
Catch ex As Exception
MessageBox.Show("Received Exception: " & ex.Message)
End Try
End Sub

Private Sub ClientAceItemBrowser1_ItemsSelected(_
ByVal sender As Object, _
ByVal itemCount As Integer _
) Handles ClientAceItemBrowser1.ItemsSelected

Try
‘If more than one item is selected then add them to the projects subscribed items
If itemCount > 1 Then
mItems = ClientAceItemBrowser1.GetSelectedItems()
mAdditems(item)
End If
Catch ex As Exception
MessageBox.Show("Received Exception: " & ex.Message)
End Try
End Sub

Private Sub btnConnect_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs _
) Handles btnConnect.Click
Try
ClientAceItemBrowser1.Connect(_
"opcda://localhost/KEPware.OPCSampleServer/{6E617113-FF2D-11D2-8087-00105AA8F840}

")
Catch ex As Exception
MessageBox.Show("Received Exception: " & ex.Message)
End Try
End Sub

Private Sub btnDisconnect_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs _
) Handles btnDisconnect.Click
Try
ClientAceItemBrowser1.Disconnect(_
"opcda://localhost/KEPware.OPCSampleServer/{6E617113-FF2D-11D2-8087-00105AA8F840}

")
Catch ex As Exception

www.ptc.com

115

ClientAce

MessageBox.Show("Received Exception: " & ex.Message)
End Try
End Sub

Private Sub btnConnectAll_Click(_
ByVal sender As System.Object, _

ByVal e As System.EventArgs _
) Handles btnConnectAll.Click
Try
ClientAceItemBrowser1.ConnectAll()
Catch ex As Exception
MessageBox.Show("Received Exception: " & ex.Message)
End Try
End Sub

Private Sub btnDisconnectAll_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs _
) Handles btnDisconnectAll.Click
Try

ClientAceItemBrowser1.DisconnectAll()
Catch ex As Exception
MessageBox.Show("Received Exception: " & ex.Message)
End Try
End Sub

Adding an ItemBrowser Control
The ItemBrowser Control provides the functionality to browse tags in an OPC Data Access server on local or
remote machines.

Adding the Control to the Visual Studio Project
All referenced controls must be on the local drive. Assemblies that are located on a network drive should not
be referenced, as this will cause the Visual Studio error "Unable to cast object of type <type> to <type>." This
is a limitation of the Microsoft .NET development environment.

1. To start, open a new or existing project in Visual Studio.

2. Verify that all of the ClientAce controls have been added to the Visual Studio Environment. For
information on adding controls to the toolbox, refer to Missing Controls.

www.ptc.com

116

ClientAce

3. To add a control, drag it from the toolbox and drop it onto a form.

Adding a Server

1. At Runtime, the ItemBrowser Control will appear as shown in the image below. The blank left pane
indicates that no servers have been added. To add a server, right-click in the left pane and then
select Add Server.

www.ptc.com

117

ClientAce

2. Next, add an OPC server using the Server Browser, OPC DA, or OPC UA tabs. This example will
demonstrate how to add a server using the OPC DA and OPC UA tabs. For information on adding a
server using the Server Browser tab, refer to Adding a ServerBrowser Control.

Note: When designing an application, it is best to synchronize the ItemBrowser Control with the
ServerBrowser control. Do not connect to a particular server using the ServerBrowser before adding
tags of a different server using the ItemBrowser Control.
For more information, refer to ServerBrowser Control.

3. Select the OPC DA tab. Then, specify the following:

l Hostname: This parameter specifies the IP Address, machine name, or localhost.

l ProgID: This parameter specifies the exact ProgID of the server.

www.ptc.com

118

ClientAce

4. Next, select the OPC UA tab. Then, specify the following:

l Application Name: This parameter specifies a name that will be used to identify the server.

l Endpoint Url: This parameter specifies the OPC UA endpoint URL.

l Security Policy: This parameter specifies the Encryption policy that is supported by the
endpoint. Options include None, Basic 128 RSA 15, and Basic 256.

l Message Security Mode: This parameter specifies the message security mode that is
supported by the endpoint. Options include None, Sign, and Sign and Encrypt.

l Authentication Settings: This parameter specifies the server's authentication settings.
When user authentication is not required, select Anonymous. When user authentication is
required, enter a Username and Password.

5. When finished, click OK. The chosen server will be placed in the left pane of the ItemBrowser window.

6. To expand the added server, locate the server name or IP Address and then click the + symbol.

www.ptc.com

119

ClientAce

7. To select the channel, click the + symbol.

8. Next, click on the tag group to display the tags in the Itemlist tab. In this example, the Device1 group
selected from Channel1 in the server is displayed. The Device1 group's tags are displayed.

Note: The tags that are can be browsed in the ItemBrowser Control can be selected and monitored
by the programming code. To view a tag's properties, click the Properties tab.

OpcDaItem Class
This class describes the management object for an OPC Item selected in the ItemBrowser Control.

www.ptc.com

120

ClientAce

Property Data Type Description

AccessRights
Object
(BrowseControls.AccessRights)

The access rights of the OPC DA item.

DataType System.Type
The description of the property. This information can be
used when displaying the property in a graphical user
interface (such as in a Grid Control or a ToolTip).

ItemName String
The item name of the property (if the OPC Server allows
properties to be read from and written to an item).

ItemPath String
The item path of the property (if the OPC Server allows
properties to be read from and written to an item).

Name String The display name of the OPC DA item.

ServerURL String The corresponding server URL.

NodeType Enumerated Values
The values shown below are the enumeration of node types for the ItemBrowser Control.

Value Constant Name Description

0 Server OPC Server or Root of the Server Browse Space.

1 Branch Branch in the address space of the OPC Server.

2 Hint Hint that indicates how the ItemID of a Item is built.

3 Item Item in the address space of the OPC Server.

ServerBrowser Control Properties
The ServerBrowser Control lets users search for OPC Servers on the local computer and in the network. The
properties are used to set the appearance and action of the browser at Runtime. Although they can only be
set at the time of design, they are accessible as Read Only properties at Runtime.

Property Use Data Type Description

BrowseStatus Input Boolean
This is used to determine whether the Validate
menu entry should be shown when a server in
the browser is right-clicked.

CustomRemoteMachineCount Input Integer
This is used to determine how many Customer
Remote Machine nodes will be displayed in the
browser when they are added.

ExpandLocalMachine Input Boolean
This is used to determine whether the
localhost node should be expanded when the
browser is initialized at Runtime.

ExpandRecentlyUsedServers Input Boolean
Indicates if the recently-used Servers node
should be initially expanded.

ExpandWebServices Input Boolean
Indicates if the WebServices node should be
initially expanded.

OPCSpecifications Input
ServerCategory
Object

Indicates the OPC specifications to show in the
browser.

www.ptc.com

121

ClientAce

RecentlyUsedServersCount Output Integer
Indicates the count of the recently-used
Servers.

ShowCustomRemoteMachine Input Boolean
This is used to determine whether the custom
remote machine node should be shown when
the browser is initialized at Runtime.

ShowLocalMachine Input Boolean
This is used to determine whether the
localhost node should be shown when the
browser is initialized at Runtime.

ShowRecentlyUsedServers Input Boolean
Indicates if the recently-used Servers node
should be shown.

ShowRemoteMachine Input Boolean
This is used to determine whether the Remote
Machine network node should be shown when
the browser is initialized at Runtime.

ShowWebServices Input Boolean
Indicates if the WebServices node should be
shown.

AddServer Method
This method adds an OPC URL to the recently-used Servers node.

AddServer(byVal opcUrl As Kepware.ClientAce.BrowseControls.OpcUrl)

GetSelectedServer Method
The GetSelectedServer Method can be used to return the currently selected server's OPCUrl object or
individual parts. It is used in conjunction with the ServerBrowser object's SelectionChanged and
ServerDoubleclicked Events. For more information, refer to OPCUrl Class.

GetSelectedServer() As Kepware.ClientAce.BrowseControls.OpcUrl

ReBrowseAll Method
This method collapses all tree nodes and discards their children.

ReBrowseAll()

SelectionChanged Event
This event indicates that the selection of the OPC server in the Browse Tree has changed.

SelectionChanged(ByVal serverIsSelected As Boolean) Handles
ClientAceServerBrowser1.SelectionChanged

ServerDoubleClicked Event
This event indicates that an OPC server in the tree was double-clicked.

ServerDoubleClicked() Handles ClientAceServerBrowser1.ServerDoubleClicked

ValidateServer Method
This method validates the currently-selected server.

www.ptc.com

122

ClientAce

ValidateServer()

Example Code
[Visual Basic]
Private Sub CLIENTACESERVERBROWSER1_SelectionChanged(ByVal serverIsSelected As Boolean)
_
Handles CLIENTACESERVERBROWSER1.SelectionChanged
Dim mURL as String
Dim mProgID as String
Dim mOPCType as String
Dim mCLSID as String
Dim mHostName as String

Try
mURL = CLIENTACESERVERBROWSER1.GetSelectedServer.Url
mProgID = CLIENTACESERVERBROWSER1.GetSelectedServer.ProgID
mOPCType = CLIENTACESERVERBROWSER1.GetSelectedServer.Type.ToString
mCLSID = CLIENTACESERVERBROWSER1.GetSelectedServer.ClsID
mHostName = CLIENTACESERVERBROWSER1.GetSelectedServer.HostName
mIsValid = CLIENTACESERVERBROWSER1.GetSelectedServer.IsValid

Catch ex As Exception
MessageBox.Show("Exception: " & ex.Message)
End Try
End Sub

Private Sub CLIENTACESERVERBROWSER1_ServerDoubleClicked() _
Handles CLIENTACESERVERBROWSER1.ServerDoubleClicked
Dim mURL as String
Dim mProgID as String
Dim mOPCType as String
Dim mCLSID as String
Dim mHostName as String
Dim mIsValid as String

 Try
mURL = CLIENTACESERVERBROWSER1.GetSelectedServer.Url
mProgID = CLIENTACESERVERBROWSER1.GetSelectedServer.ProgID
mOPCType = CLIENTACESERVERBROWSER1.GetSelectedServer.Type.ToString
mCLSID = CLIENTACESERVERBROWSER1.GetSelectedServer.ClsID
mHostName = CLIENTACESERVERBROWSER1.GetSelectedServer.HostName
mIsValid = CLIENTACESERVERBROWSER1.GetSelectedServer.IsValid
Catch ex As Exception
MessageBox.Show("Exception: " & ex.Message)
End Try
End Sub

www.ptc.com

123

ClientAce

Adding a ServerBrowser Control
The ServerBrowser Control provides the functionality to browse OPC Data Access servers on local and
remote machines.

Adding the Control to the Visual Studio Project
All referenced controls must be on the local drive. Assemblies that are located on a network drive should not
be referenced, as this will cause the Visual Studio error "Unable to cast object of type <type> to <type>." This
is a limitation of the Microsoft .NET development environment.

1. To start, open a new or existing project in Visual Studio.

2. Verify that all of the ClientAce controls have been added to the Visual Studio Environment. For
information on adding controls to the toolbox, refer to Missing Controls.

3. To add a control, drag it from the toolbox and drop it onto a form.

The ServerBrowser Control at Runtime

www.ptc.com

124

ClientAce

At Runtime, the ServerBrowser Control will appear as shown in the image below.

Local Machine
To expand the Local Machine and display the servers, click on the + symbol. To select a server, simply click
on it. For more information on using the ClientAce API to connect to the server, refer to ClientAce .NET
API Assembly.

Remote Machine
To expand the Remote Machine and display the nodes/machines on the network, click on the + symbol. To
display all Enumerated OPC DA servers and all OPC UA servers that are registered with a Local UA
Discovery Server, click on the + symbol. The Remote Machine's DCOM settings must be configured properly
for users to access its servers. To select a server, simply click on it.

For more information on using the ClientAce API to connect to the server, refer to ClientAce .NET API
Assembly.

Adding a Custom Remote Machine
Custom Remote Machines are used to custom define links to remote machines (using either the IP Address
or machine name of the PC that will be browsed). For information on defining a custom link to a remote
machine, refer to the instructions below.

1. To start, locate Custom Remote Machines and then click the + symbol.

www.ptc.com

125

ClientAce

2. Click <Select to add a node> and then press F2.

3. Next, type the IP Address or the machine name of the remote PC that will be browsed.

4. Press Enter.

Tip: This will create a link that points to the remote machine. To display the servers on the remote
machine, click on the + symbol next to the remote machine IP Address or name.

5. Next, click on a server to highlight it.

Note: In this example, the remote machine 10.10.111.181 has been defined as a custom link.

Important: Once a Custom Remote Machine has been created, the link will be saved by the application.
The next time that the application is opened, the Custom Remote Machine will be available and accessible;
however, it is only associated with the application that it was created for originally. For example, when a new
application is created, the Custom Remote Machines created for other applications/projects will not be
available for browsing. A new Custom Remote Machine link must be created for that new application/project.

OPCType Enumerated Values
The values shown below are the enumeration for the OPC specification types.

Value Constant Name Description

0 NOTDEFINED No type defined. This is the default state.

1 XMLDA OPC XML Data Access.

2 DA OPC Data Access.

www.ptc.com

126

ClientAce

3 AE OPC Alarm and Events.

4 DX OPC Data Exchange.

5 HDA OPC Historical Data Access.

6 UA OPC Unified Architecture.

OPCUrl Class
This class describes the management object for the URL of an OPC Server selected in the ServerBrowser
Control and ItemBrowser Control.

Property Data Type Description

ClsID
String

(BrowseControls.OPCType)
The registered Class ID of the selected OPC Server.

HostName String
The name of the host machine where the selected OPC Server
is located. For a local server connection, this is called the
"localhost."

IsValid Boolean
Reports whether or not the selected server is a valid OPC
Server.

ProgID String The Program ID for the selected COM OPC Server.

Type Object*
The OPC Specification Type (such as DA) for an OPC DA
Server.*

URL String

The complete OPC server's URL takes the following form:

OPC DA: opcda://[Hostname, e.g. localhost]/[ProgID]/[ClsID]
OPC XML-DA: http://[Hostname, e.g. localhost]/[location of
service file]
OPC UA: opc.tcp://[Hostname, e.g. localhost]:[Port]

*For more information, refer to OPCType Enumerated Values.

KEPServerEX Controls
ChannelSetting Control
OPC DA
Although these properties can only be set at the time of design, they are accessible as Read Only properties
at Runtime.

Property
Data
Type

Description

ChannelName String
The Channel Name of the channel in the server to which the control is
connected.

NodeName String
The location of the server to which the control is connected. This is called the
"localhost" in a local connection, and the IP Address of the Host Name for a
remote connection.

ProgID String The Program ID of the server to which the Channel Settings Control is connected.

www.ptc.com

127

ClientAce

See Also: Adding a ChannelSetting Control

ServerState Control
OPC DA
Although the properties can only be set at the time of design, they are accessible as Read Only properties at
Runtime.

Property
Data
Type

Description

NodeName String
The location of the server to which the control is connected. This is called the
"localhost" for a local connection, and the IP Address of the Host Name for a
remote connection.

ProgID String The Program ID of the server to which the Channel Settings Control is connected.

See Also: Adding a ServerState Control

Adding a ChannelSetting Control
The ChannelSetting Control provides the functionality to view and make certain changes to the properties of
a channel in an OPC server provided by Kepware Technologies.

Note: If multiple KEPServerEX OPC servers are installed on the local machine, the ChannelSetting Control
will retrieve the channel properties of the server that was installed most recently.

Adding the Control to the Visual Studio Project
All referenced controls must be on the local drive. Assemblies that are located on a network drive should not
be referenced, as this will cause the Visual Studio error "Unable to cast object of type <type> to <type>." This
is a limitation of the Microsoft .NET development environment.

1. To start, open a new or existing project (solution) in Visual Studio.

2. Verify that all of the ClientAce controls have been added to the Visual Studio Environment. In Visual
Studio, the Toolbox should include the controls shown below. For more information on adding
controls to the toolbox, refer to Missing Controls.

www.ptc.com

128

ClientAce

3. To add a control, drag it from the toolbox and drop it onto a form.

The ChannelSetting Control at Runtime
The ChannelSetting Control will display different tabs depending on the type of channel to which it is linked.
The image below shows the options available to serial channels.

Linking a ChannelSetting Control to a Specific Channel

1. To start, right-click on the ChannelSetting Control and then select Properties.

2. In Channel Name, enter "Channel1" (because that node name is present in the sample KEPServerEX
OPC project).

www.ptc.com

129

ClientAce

Note: If the channel uses a network adapter, it will be listed in the Network Adapter parameter.
Both the Network Adapter and W/R Duty Cycle field can be modified as needed.

3. Next, specify the Enable Channel Diagnostics setting.

Note: When enabled, diagnostics information will be displayed in a separate Diagnostics tab.

Note: The Device1 and Device2 tabs display the properties of the two devices configured under
the channel. The window will display a tab for each device that is configured. The Device Properties
cannot be modified in this window even though they are displayed.

www.ptc.com

130

ClientAce

www.ptc.com

131

ClientAce

Adding a ServerState Control
The ServerState Control provides the functionality to view and make certain changes to the properties of the
project in an OPC server provided by Kepware Technologies.

Note: If multiple KEPServerEX OPC servers are installed on the local machine, the ServerState Control will
retrieve the project properties of the server that was installed most recently.

Adding the Control to the Visual Studio Project
All referenced controls must be on the local drive. Assemblies that are located on a network drive should not
be referenced, as this will cause the Visual Studio error "Unable to cast object of type <type> to <type>." This
is a limitation of the Microsoft .NET development environment.

1. To start, open a new or existing project in Visual Studio.

2. Verify that all of the ClientAce controls have been added to the Visual Studio Environment. In Visual
Studio, the toolbox should include the controls shown below. For information on adding controls to
the Toolbox, refer to Missing Controls.

3. To add a control, drag it from the toolbox and drop it onto a form.

The ServerState Control at Runtime
At Runtime, the ServerState Control will appear as shown below.

www.ptc.com

132

ClientAce

Note: Initially, the tag count displayed in the Total Tag Count and Active Tag Count fields is 6. This
accounts for the six state properties that are displayed: Client Count, Total Tag Count, Active Tag Count,
Date, Time, and Project Name.

www.ptc.com

133

ClientAce

Data Types Description

OPC
Type

Visual
Studio Type

Description

Boolean Boolean

Single bit. The following value range depends on implementation:

True = 1 and -1
False = 0

Word
UShort or
UInt16

Unsigned 16 bit value (2 bytes). The value range is 0 to 65535.

Short Int16 Signed 16 bit value (2 bytes). The value range is -32768 to 32767.

DWord
UInteger or
Uint32

Unsigned 32 bit value (4 bytes). The value range is 0 to 4294967295.

Long
Integer or
Int32

Signed 32 bit value (4 bytes). The value range is -2,147,483,648 to
2,147,483,647.

Float Single

32 bit floating point value (4 bytes). The value range depends on
implementation:

For negative values: -3.4028235E+38 to -1.401298E-45 .*
For positive values: 1.401298E-45 to 3.4028235E+38.*

Double Double

64 bit floating point value (8 bytes). The value range depends on
implementation:

For negative values: -1.79769313486231570E+308 to -
4.94065645841246544E-324.*
For positive values: 4.94065645841246544E-324 to
1.79769313486231570E+308.*

String String
Typically null terminated, null padded, or blank padded ASCII string. 0 to 2
billion Unicode characters in Visual Studio.

Char SByte 1 byte. The value range is -128 to 127.

Date

Date or
DateTime

Long or Int64

ULong or
UInt64

Char or Wide
Char

Decimal

8 bytes.The value range is 0:00:00 (midnight) on January 1, 0001 through
11:59:59 PM on December 31, 9999.

8 bytes. The value range is -9,223,372,036,854,775,808 through
9,223,372,036,854,775,807 (9.2...E+18).*

8 bytes. The value range is 0 through 18,446,744,073,709,551,615 (1.8...E+19).

2 bytes. The value range is 2 to 65535.**

16 bytes. The value range is as follows:

0 through +/-79,228,162,514,264,337,593,543,950,335 (+/-7.9...E+28) with no
decimal point.*
0 through +/-7.9228162514264337593543950335 with 28 places to the right of
the decimal.

www.ptc.com

134

ClientAce

*The smallest nonzero number is +/-0.0000000000000000000000000001 (+/-1E-28).
**Unicode characters. Some drivers support Unicode strings as individual data (but not wide characters).

www.ptc.com

135

ClientAce

Applying ClientAce
For more information on applying ClientAce, select a link from the list below.

Licensing ClientAce
Upgrading ClientAce
Signing a Client Application
Deploying a Client Application

Licensing ClientAce
Unless ClientAce is licensed (and all Runtime applications built with the ClientAce .NET controls have been
signed), the applications will run in Demo Mode for one hour. After the demo period expires, another
demonstration period can be started by restarting the application. After ClientAce is licensed and the
Runtime applications built with ClientAce .NET controls are signed, the applications will run in unlimited
Runtime operation. For information on licensing ClientAce, refer to the instructions below.

For all licensing questions, contact Kepware Technologies at sales@kepware.com or +1-207-775-1660 ext. 211.

1. To start, click Start | Programs | Kepware Products.

2. Then, click ClientAce | License ClientAce.

3. In Kepware ClientAce License, click Acquire License.

4. In Registration Information, specify the Name and Company fields. As the information is entered,
the License Information field will be populated with the licensing information needed by Kepware
Technologies.

www.ptc.com

136

ClientAce

5. Once finished, click OK. This will invoke an email message window from the email client application.
To send the message to Kepware Technologies, click Send.

6. Kepware Technologies will then send an email reply containing the licensing code. Copy the code into
the Kepware ClientAce License dialog.

7. Then, click Register License.

8. Once the confirmation message is displayed, click OK.

www.ptc.com

137

ClientAce

Note: ClientAce is now licensed. The custom client applications that have been built may now be
signed. For more information, refer to Signing Your Client Application.

Upgrading ClientAce
When upgrading a ClientAce project to a newer version, users should do the following:

1. Clean the project's Bin folders by removing all the files that have been created using the old .dll files.
This is necessary because the project must be created using the new .dll files, and some of the old
files may not be removed when the Solution Explorer is cleaned.

2. In the project's references, remove the current ClientAce .dll files that are referenced. Then, replace
them with the new .dll files.

3. Recompile and test the new project to ensure that it works using the new .dll files.

Signing a Client Application
Applications created using a ClientAce .NET controls must be signed before they can run for unlimited
Runtime operation. If the application is not signed, it will run in demo mode.

ClientAce must be licensed from Kepware Technologies before applications can be signed. For more
information, refer to Licensing ClientAce.

Signing the Custom Client Application Using the Visual Studio Sign Add-in

1. To start, open the project that needs to be signed.

2. Next, click the Sign icon in the toolbar. This tags the project's executable file to be signed whenever
the project is built.

www.ptc.com

138

ClientAce

Notes:

1. The license file (*.lic) is saved in the same folder as the executable file.

2. Signing the ClientAce applications will add the following two lines to the application's Post Build
events:

C:\Program Files\Kepware Technologies\ClientAce\Sign\sign.exe" "$(TargetPath)" "$(TargetName).lic
C:\Program Files\Kepware Technologies\ClientAce\Sign\sign.exe" "$(TargetDir)$(TargetName).vshost.exe"
"$(TargetName).vshost.lic

3. The install adds the ClientAce Add-in path to the IDE Add-in Security Option in Tools | Options |
Environment | Add-in Security | Add-in File Paths.

Manually Signing the Custom Client Application
When the application is signed manually, the steps must be repeated every time the project is built to sign
the application. For more information, refer to the instructions below.

1. To start, click Start | Programs | Kepware Products.

2. Then, click ClientAce | Sign Executable.

www.ptc.com

139

ClientAce

3. In Signing GUI, click the Ellipses button to browse for the application's executable file.

4. When the executable file is chosen, the signed license code will be displayed in the License File field.
The license file (*.lic) will be saved in the same folder as the executable file.

5. Once finished, click OK to save and exit.

Note: The license file (*.lic) will be saved to the same folder that is chosen for the build output path in
Project Compile Preferences.

l In Visual Studio 2003 and Visual Studio 2005, the default output path is in bin\Debug\ in the project
folder.

l In Visual Studio 2008, the default output path is in bin\Release.

As a result of this change, Visual Studio 2008 users run in Demo Mode (and receive the Demo Mode popup)
when testing a project in Debug Mode that has been signed. To change this behavior, change the output
path to \bin\Debug.

Deploying a Client Application
Depending on the version of Visual Studio used, it may be necessary to download and install the Visual
Studio Installer Extension Project from Microsoft.

For information on a specific version of Visual Studio and the .NET Assemblies, select a link from the list
below:

l Visual Studio 2003 and Visual Studio 2005 (.NET 2.0.0.x Assemblies)

l Visual Studio 2008 (.NET 3.5.0.x Assemblies)

l Visual Studio 2010, 2012, and 2013 (.NET 4.0.2.x Assemblies)

Visual Studio 2003 and Visual Studio 2005 (.NET 2.0.0.x Assemblies)
Depending on the ClientAce features being used by the application, one or more of the following files may
be required for the application to run properly:

Name Version

Kepware.ClientAce.Base.dll 2.0.0.x

Kepware.ClientAce.BrowseControls.dll 2.0.0.x

www.ptc.com

140

ClientAce

Kepware.ClientAce.Da_Junction.dll 2.0.0.x

Kepware.ClientAce.KEPServerExControls.dll 2.0.0.x

Kepware.ClientAce.OpcClient.dll 2.0.0.x

YourCustomClientAceApplication.exe
YourCustomClientAceApplication.lic

These files will be located in the output build directory created by Visual Studio for the project. When
deploying the client application created using ClientAce and the .NET 2.0.0.x Assemblies, these files must be
installed in the same location as the custom client executable files.

.NET Framework Requirements

.NET Framework 2.0 must be installed on the PC on which the client will deploy custom client applications
created using ClientAce and the .NET 2.0.0.x Assemblies. If the client application utilizes functionality from a
.NET Framework version that is higher than the .NET 2.0 Framework, then that version must also be
installed. To check if .NET Framework is installed, follow the instructions below.

1. Click Start on the Windows desktop, and then select the Control Panel.

2. Next, double-click Add or Remove Programs.

3. Next, scroll through the list of applications. If Microsoft .NET Framework 2.0 is listed, the version
required by ClientAce is already installed and does not need to be installed again.

4. To obtain versions of the .NET Framework, click Start on the Windows desktop and then select
Windows Update.

Note: The actual ClientAce install does not need to be installed on the destination computer for the
custom ClientAce application to work.

See Also: System and Application Requirements

Visual Studio 2008 (.NET 3.5.0.x Assemblies)
Depending on the ClientAce features being used by the application, one or more of the following files may
be required for the application to run properly:

Name Version

Kepware.ClientAce.BrowseControls.dll 3.5.0.x

Kepware.ClientAce.Da_Junction.dll 3.5.0.x

Kepware.ClientAce.KEPServerExControls.dll 3.5.0.x

Kepware.ClientAce.OpcClient.dll 3.5.0.x

YourCustomClientAceApplication.exe
YourCustomClientAceApplication.lic

These files will be located in the project's output build directory that was created by Visual Studio. When
deploying the client application created using ClientAce and the .NET 3.5.0.x Assemblies, these files must be
installed in the same location as the custom client executable files.

.NET Framework Requirements

www.ptc.com

141

ClientAce

.NET Framework 3.5 Service Pack 1 must be installed on the PC on which the client deploys the custom client
applications created using ClientAce and the .NET 3.5.0.x Assemblies. If the client application utilizes
functionality from a .NET Framework version that is higher than the .NET 3.5 Framework, then that version
must also be installed. To check if the .NET Framework is installed, follow the instructions below.

1. Click Start on the Windows desktop, and then select the Control Panel.

2. Next, double-click Add or Remove Programs.

3. Next, scroll through the list of applications. If Microsoft .NET Framework 3.5 SP1 is listed, the version
required by ClientAce is already installed and does not need to be installed again.

4. To obtain versions of the .NET Framework, click Start on the Windows desktop and then select
Windows Update.

Note: The actual ClientAce install does not need to be installed on the destination computer for the
custom ClientAce application to work.

See Also: System and Application Requirements

Visual Studio 2010, 2012, and 2013 (.NET 4.0.2.x Assemblies)
Depending on the ClientAce features being used by the application, one or more of the following files may
be required for the application to run properly:

Name Version

Kepware.ClientAce.BrowseControls.dll 4.0.2.x

Kepware.ClientAce.Da_Junction.dll 4.0.2.x

Kepware.ClientAce.KEPServerExControls.dll 4.0.2.x

Kepware.ClientAce.OpcClient.dll 4.0.2.x

YourCustomClientAceApplication.exe
YourCustomClientAceApplication.lic

These files will be located in the project's output build directory that was created by Visual Studio. When
deploying the client application created using ClientAce and the .NET 4.0.2.x Assemblies, these files must be
installed in the same location as the custom client executable files.

.NET Framework Requirements

.NET Framework 4.0 must be installed on the PC on which the client deploys the custom client applications
created using ClientAce and the .NET 4.0.2.x Assemblies. If the client application utilizes functionality from a
.NET Framework version that is higher than the .NET 4.0 Framework, then that version must also be
installed. To check if the .NET Framework is installed, follow the instructions below.

1. Click Start on the Windows desktop, and then select the Control Panel.

2. Next, double-click Add or Remove Programs.

3. Next, scroll through the list of applications. If Microsoft .NET Framework 4.0 is listed, the version
required by ClientAce is already installed and does not need to be installed again.

4. To obtain versions of the .NET Framework, click Start on the Windows desktop and then select
Windows Update.

www.ptc.com

142

ClientAce

Note: The actual ClientAce install does not need to be installed on the destination computer for the
custom ClientAce application to work.

See Also: System and Application Requirements

www.ptc.com

143

ClientAce

Troubleshooting
For more information on a common troubleshooting problem, select a link from the list below.

ASP .NET Development Incompatibility
CoInitializeSecurity
Converting Visual Studio 2008 to Visual Studio 2010
Microsoft Visual Studio Environment Configuration
Missing Controls
Referencing Controls
Removing Blank Toolbar Options after Uninstalling ClientAce (VS 2005)
Visual Studio 2008, 2010, 2012, 2013

ASP .NET Development Incompatibility
ClientAce cannot be used to develop ASP .NET applications. If ASP .NET OPC clients must be developed,
please contact Kepware Technical Support.

CoInitializeSecurity
The ClientAce application must set its security credentials such that an OPC server has the privilege to send
OnDataChange/OnServerShutDown notifications to the client. To set the security credentials, a ClientAce
application must set the security level using CoInitializeSecurity during the application's initialization.

Example Code
The Visual Basic and C# examples below show how to call CoInitializeSecurity in the ClientAce application.

[Visual Basic]
' .Net library for Interoperability
ImportsSystem.Runtime.InteropServices
' declaring the enum for the CoInitializeSecurity call
PublicEnum RpcImpLevel
E_Default = 0
E_Anonymous = 1
E_Identify = 2
E_Impersonate = 3
E_Delegate = 4
EndEnum
PublicEnum EoAuthnCap

www.ptc.com

144

ClientAce

E_None = &H0
E_MutualAuth = &H1
E_StaticCloaking = &H20
E_DynamicCloaking = &H40
E_AnyAuthority = &H80
E_MakeFullSIC = &H100
E_Default = &H800
E_SecureRefs = &H2
E_AccessControl = &H4
E_AppID = &H8
E_Dynamic = &H10
E_RequireFullSIC = &H200
E_AutoImpersonate = &H400
E_NoCustomMarshal = &H2000
E_DisableAAA = &H1000
End Enum

Public Enum >RpcAuthnLevel
E_Default = 0
E_None = 1
E_Connect = 2
E_Call = 3
E_Pkt = 4
E_PktIntegrity = 5
E_PktPrivacy = 6
EndEnum

'end of enums declared for the CoInitializeSecurity call

Public Class Form1

Inherits System.Windows.Forms.Form

' declare the CoInitializeSecurity signature within the class where it
' should be called (must be called before launching form

Declare Function CoInitializeSecurity Lib "ole32.dll" (ByVal pVoid As IntPtr, _
ByVal cAuthSvc As Integer, ByVal asAuthSvcByVal As IntPtr, _
ByVal pReserved1 As IntPtr, ByVal dwAuthnLevel As Integer, ByVal dwImpLevel As Integer, _
ByVal pAuthList As IntPtr, ByVal dwCapabilities As Integer, ByVal pReserved3 As IntPtr) As

www.ptc.com

145

ClientAce

Integer

#Region " Windows Form Designer generated code "

Public Sub New()
MyBase.New()

' good place to call CoInitializeSecurity
CoInitializeSecurity(IntPtr.Zero, -1, IntPtr.Zero, _
IntPtr.Zero, RpcAuthnLevel.E_None, _
RpcImpLevel.E_Impersonate, IntPtr.Zero, EoAuthnCap.E_None, IntPtr.Zero)

'This call is required by the Windows Form Designer.

InitializeComponent()

'Add any initialization after the InitializeComponent() call
End Sub

C#]

// .net library required for interoperability

usingSystem.Runtime.InteropServices;

// ******Enums required for CoInitializeSecurity call through C#.......//

publicenum RpcImpLevel
{ Default = 0,
Anonymous = 1,
Identify = 2,
Impersonate = 3,
Delegate = 4
}

publicenum EoAuthnCap
{ None = 0x00,
MutualAuth = 0x01,

www.ptc.com

146

ClientAce

StaticCloaking= 0x20,
DynamicCloaking= 0x40,
AnyAuthority= 0x80,
MakeFullSIC= 0x100,
Default= 0x800,
SecureRefs= 0x02,
AccessControl= 0x04,
AppID= 0x08,
Dynamic= 0x10,
RequireFullSIC= 0x200,
AutoImpersonate= 0x400,
NoCustomMarshal= 0x2000,
DisableAAA= 0x1000
}

publicenum RpcAuthnLevel

{ Default = 0,
None = 1,
Connect = 2,
Call = 3,
Pkt = 4,
PktIntegrity = 5,
PktPrivacy = 6
}

/*****************end of enum declarations for CoInitializeSecurity call******/

namespace CSharpTestClient
{

publicclass Form1 : System.Windows.Forms.Form
{ // Import the CoInitializeSecurity call from
[DllImport("ole32.dll", CharSet = CharSet.Auto)]

public static extern int CoInitializeSecurity(IntPtr pVoid, int
cAuthSvc,IntPtrasAuthSvc, IntPtr pReserved1, RpcAuthnLevel level, RpcImpLevel impers,IntPtr
pAuthList, EoAuthnCap dwCapabilities, IntPtr
pReserved3);

private Kepware.ClientAce.DA_Junction.ClientAceDA_Junction ClientAceDA_Junction1;

private System.Windows.Forms.TextBox textBox1;

www.ptc.com

147

ClientAce

public Form1()

{

InitializeComponent();

}

///

///The main entry point for the application.

///

[STAThread]

static void Main()

{

// call the CoInitializeSecurity right before Launching the Application

CoInitializeSecurity(IntPtr.Zero, -1, IntPtr.Zero,
IntPtr.Zero,RpcAuthnLevel.None ,
RpcImpLevel.Impersonate,IntPtr.Zero, EoAuthnCap.None, IntPtr.Zero);

Application.Run(new Form1());

}

}

}

[C#]
// .net library required for interoperability
usingSystem.Runtime.InteropServices;
// ******Enums required for CoInitializeSecurity call through C#.......//
publicenum RpcImpLevel
{ Default = 0, Anonymous = 1,
Identify = 2, Impersonate = 3,
Delegate = 4 }

publicenum EoAuthnCap
{ None = 0x00,
MutualAuth = 0x01,

www.ptc.com

148

ClientAce

StaticCloaking= 0x20,
DynamicCloaking= 0x40,
AnyAuthority= 0x80,
MakeFullSIC= 0x100,
Default= 0x800,
SecureRefs= 0x02,
AccessControl= 0x04,
AppID= 0x08,
Dynamic= 0x10,
RequireFullSIC= 0x200,
AutoImpersonate= 0x400,
NoCustomMarshal= 0x2000,
DisableAAA= 0x1000 }

publicenum RpcAuthnLevel
{ Default = 0, None = 1,
Connect = 2, Call = 3,
Pkt = 4, PktIntegrity = 5,
PktPrivacy = 6 }

/*****************end of enum declarations for CoInitializeSecurity call******/
(Continued)
namespace CSharpTestClient
{
publicclass Form1 : System.Windows.Forms.Form
{ // Import the CoInitializeSecurity call from
[DllImport("ole32.dll", CharSet = CharSet.Auto)]
public static extern int CoInitializeSecurity(IntPtr pVoid, int

cAuthSvc,IntPtrasAuthSvc, IntPtr pReserved1, RpcAuthnLevel level, RpcImpLevel impers,IntPtr
pAuthList, EoAuthnCap dwCapabilities, IntPtr
pReserved3);

privateKepware.ClientAce.DA_Junction.ClientAceDA_Junction ClientAceDA_Junction1;
private System.Windows.Forms.TextBox textBox1;
public Form1()
{
InitializeComponent();

}
/// <summary>
///The main entry point for the application.
/// </summary>
[STAThread]
static void Main()
{

// call the CoInitializeSecurity right before Launching the Application
CoInitializeSecurity(IntPtr.Zero, -1, IntPtr.Zero,
IntPtr.Zero,RpcAuthnLevel.None ,

RpcImpLevel.Impersonate,IntPtr.Zero, EoAuthnCap.None, IntPtr.Zero);
Application.Run(new Form1());
}
}

www.ptc.com

149

ClientAce

}

Converting Visual Studio 2008 to Visual Studio 2010
Using Visual Studio 2008 Examples with Visual Studio 2010
Visual Studio 2008 examples may be used with Visual Studio 2010 after they have been converted to Visual
Studio 2010 solutions. To do so, utilize the Visual Studio Conversion Wizard. Afterward, the examples may be
compiled and run.

Installing Visual Studio 2010 when Visual Studio 2008 and ClientAce are Currently
Installed
For information on installing Visual Studio 2010 when Visual Studio 2008 and ClientAce are already installed,
refer to the instructions below.

1. To start, install Visual Studio 2010. Then, run the program.

2. In Choose Default Environment Settings, select the desired environment.

3. Once finished, click Start Visual Studio. Then, close Visual Studio.

4. Next, run the ClientAce setup and select Modify. Then, continue through the installation.

Note: This procedure is recommended because the Sign Toolbar and ClientAce Toolbox will not
successfully migrate from Visual Studio 2008. As a result, both the Sign Toolbar and the ClientAce
Toolbox added to Visual Studio 2010 will be invalid.

Repairing the Invalid Sign Toolbar and ClientAce Toolbox Added by Migrate
Settings
Users whose install of Visual Studio 2010 migrated settings from Visual Studio 2008 can use the following
procedure to repair the invalid Sign Toolbar and ClientAce Toolbox.

1. Run the ClientAce setup and select Modify.

2. Then, continue through the installation.

Manually Removing the Sign Toolbar and ClientAce Toolbox Added by Migrate
Settings
Users who do not want to use ClientAce with Visual Studio 2010 (or whose migration of the Visual Studio
2008 settings added an invalid Sign Toolbar and ClientAce Toolbox) can use the following procedure to
manually remove the Sign Toolbar and ClientAce Toolbox.

1. To start, open Visual Studio 2010.

2. Locate the Toolbox window. Then, right-click and select Show All.

3. Next, right-click on ClientAce Tab and select Delete Tab.

4. Then, click View | Toolbars | Customize.

5. Locate the Kepware Sign Bar and then select Delete.

Microsoft Visual Studio Environment Configuration
While running the ClientAce setup, users may be presented with the following message:

www.ptc.com

150

ClientAce

At this point, the specified user must run Microsoft Visual Studio and finish setting up the default Visual
Studio environment. Once completed, the ClientAce setup may continue.

The ClientAce setup cannot add toolbars or toolbox items until the Visual Studio environment has been
configured for the current user.

Missing Controls
The following controls are typically added to the system's Visual Studio Environment automatically during
the ClientAce installation process. If the Toolbox does not have any of the ClientAce controls, it is possible
that the controls were unchecked during the ClientAce installation process.

Required ClientAce Controls

l DA_Junction

l ServerBrowser

l ItemBrowser

Optional KEPServerEX Controls

l ChannelSetting

l ServerState

Adding ClientAce Controls to the Visual Studio Environment
All referenced controls must be on the local drive. Assemblies that are located on a network drive should not
be referenced, as this will cause the Visual Studio error "Unable to cast object of type <type> to <type>." This
is a limitation of the Microsoft .NET development environment.

1. To start, open a new C# or Visual Basic project using the Visual Studio .Net application.

www.ptc.com

151

ClientAce

2. Then, right-click anywhere on the Toolbox window and select Add Tab.

3. In the empty box, enter "ClientAce". This will create a ClientAce tab.

4. Next, right-click anywhere on the ClientAce tab and select Add/Remove Items.

Tip: If using Visual Studio 2005, select Choose Items.

www.ptc.com

152

ClientAce

5. In the Customize Toolbox window, click the Browse button. Then, navigate to the directory where
the "ClientAce.dll" files are stored.

www.ptc.com

153

ClientAce

6. Click to select the .dll file that contains the controls yet to be added. Then, click Open (or double-click
the .dll file).

Kepware.ClientAce.DA_Junction.dll: DA Junction control
Kepware.ClientAce.BrowseControls.dll: ServerBrowser and ItemBrowser controls
Kepware.ClientAce.KEPServerExControls.dll: ChannelSetting and ServerState

www.ptc.com

154

ClientAce

For more information, refer to Additional Controls.

7. Select a .dll file to display the Customize Toolbox window. In this example, the ClientAce.DA_Junction
library is checked for inclusion.

8. To add other controls, click Browse and then select another .dll file. Repeat until all the control files
(that is, all the .dll files) have been added to the Customize Toolbox for inclusion.

www.ptc.com

155

ClientAce

9. Once finished, click OK.

The Toolbox will display all controls that have been added.

Note: To display the applicable references in the Solution Explorer, select View | Solution Explorer.
Controls that have been added to the Visual Studio Environment can also be added to the Visual Studio
project by dragging them from the Toolbox | ClientAce tab onto the form. For more information, refer to
Additional Controls.

Referencing Controls
All referenced controls must be on the local drive. Assemblies that are located on a network drive should not
be referenced, as this will cause the Visual Studio error "Unable to cast object of type <type> to <type>." This
is a limitation of the Microsoft .NET development environment.

Removing Blank Toolbar Options after Uninstalling ClientAce (VS 2005)
If ClientAce is uninstalled, the Microsoft Visual Studio 2005 toolbar will have a blank space where the Sign
and Unsign icons were once located. For more information on removing the blank toolbar options, refer to
the instructions below.

Note: This is only an issue with Visual Studio 2005 (not Visual Studio 2003).

1. To start, open Visual Studio. Then, click on the small arrow on the right edge of the blank toolbar
option and select Add or Remove Buttons.

2. Then, select Customize.

www.ptc.com

156

ClientAce

3. In the Toolbars tab, locate Kepware Sign Bar. Check it, and then click Delete.

4. Once finished, select Close.

Visual Studio 2008, 2010, 2012, and 2013
Creating a New Project
When creating a new project, users must set the project's Target Framework. For more information, refer to
the instructions below.

1. To start, open the Compile tab in My Project.

2. Next, click Advanced Compile Options… | Advanced Compiler Settings.

l For Visual Studio 2008, specify .NET Framework 3.5.

l For Visual Studio 2010, 2012, and 2013; specify .NET Framework 4.0.

3. Upon completion, click OK.

64-Bit Operating Systems
When running a 64-bit operating system, users must set the project's Target CPU to x86. For more
information, refer to the instructions below.

1. To start, open the Compile tab in My Project.

2. Then, click Advanced Compile Options... | Advanced Compiler Settings and specify x86.

3. Upon completion, click OK.

www.ptc.com

157

ClientAce

Appendix
For more information, select a link from the list below.

Deconstructing the OPC Quality Field
UAC Self Elevation

Deconstructing the OPC Quality Field
The full quality code is 16 bits: VVVVVVVVQQSSSSLL, where:

l V is for Vendor.

l Q is for Quality.

l S is for substatus.

l L is for Limit.

Quality

QQ
Bit
Value

Definition Notes

0 00SSSSLL Bad The value is not useful for the reasons indicated by the substatus.

1 01SSSSLL Uncertain
The quality of the value is uncertain for the reasons indicated by the
substatus.

2 10SSSSLL N/A This is not used by OPC.

3 11SSSSLL Good The quality of the value is Good.

Note: Servers that do not support quality information must return 3 (Good). It is also acceptable for a server
to return Bad or Good (0x00 or 0xC0) and to always return 0 for substatus and limit.

Substatus for Bad Quality

SSSS
Bit
Value

Definition Notes

0 000000LL Nonspecific The value is bad but the specific reason is unknown.

1 000001LL
Configuration
Error

There is a server-specific problem with the configuration (such as,
the item has been deleted from the configuration).

2 000010LL Not Connected
The input that is required to be logically connected is missing. This
quality may indicate that no value is available at this time for a
reason such as the data source did not provide the value.

3 000011LL Device Failure A device failure has been detected.

4 000100LL Sensor Failure
A sensor failure has been detected. The limit field may provide
additional diagnostic information.

5 000101LL
Last Known
Value

Communications have failed; however, the last known value is
available. The age of the value can be determined from the
TIMESTAMP value in OPCITEMSTATE.

6 000110LL
Communications
Failure

Communications have failed. There is no last known value available.

7 000111LL Out of Service
The block is off-scan or otherwise locked. This quality is also used
when the active state of the item or the group containing the item is
InActive.

www.ptc.com

158

ClientAce

8 N/A N/A This is not used by OPC.

Note: Servers that do not support substatus information should return 0.

Substatus for Uncertain Quality

SSSS
Bit
Value

Definition Notes

0 010000LL Nonspecific Indicates that there is no specific reason why the value is uncertain.

1 010001LL
Last Usable
Value

Whatever was writing this value has stopped. The returned value should
be regarded as "stale."

Last Usable Value is different from a bad value with substatus 5 (Last
Known Value), which specifically indicates a detectable communications
error on a "fetched" value. Last Usable Value indicates the failure of
some external source to send a value within an acceptable period of
time. The age of the value can be determined from the TIMESTAMP
value in OPCITEMSTATE.

2-3 N/A N/A This is not used by OPC.

4 010100LL
Sensor Not
Accurate

Either the value has "pegged" at one of the sensor limits (in which case
the limit field should be set to 1 or 2) or the sensor is otherwise known to
be out of calibration as indicated by some form of internal diagnostics (in
which case the limit field should be 0).

5 010101LL
Engineering
Units
Exceeded

The value returned is outside of the limits defined for that parameter. In
this case, the limit field indicates which limit has been exceeded;
however, that does not necessarily mean that the value cannot move
farther out of range.

6 010110LL Sub-normal
The value is derived from multiple sources and has less than the
required number of good sources.

7-15 N/A N/A This is not used by OPC.

Note: Servers that do not support substatus information should return 0.

Substatus for Good Quality

SSSS
Bit
Value

Definition Notes

0 110000LL Nonspecific The value is good and there are no special conditions.

1-5 N/A N/A This is not used by OPC.

6 110110LL
Local
Override

The value has been overridden. This is generally because the input has
been disconnected and a manually entered value has been "forced."

7-15 N/A N/A This is not used by OPC.

Note: Servers that do not support substatus information should return 0.

Limit
LL Bit Value Definition Notes

www.ptc.com

159

ClientAce

0 QQSSSS00 Not Limited The value is free to move up or down.

1 QQSSSS01 Low Limited The value has "pegged" at some lower limit.

2 QQSSSS10 High Limited The value has "pegged" at some high limit.

3 QQSSSS11 Constant The value is constant and cannot move.

Note: The limit value is valid regardless of the quality and substatus values. In some cases (such as Sensor
Failure), the limit value can provide useful diagnostic information. Servers that do not support limit
information should return 0.

UAC Self Elevation
When developing applications to run on Windows Vista and higher operating systems with UAC enabled,
there will be many times that the application needs to execute functions and processes that require
Administrator privileges. By default, .NET applications are configured to run with the privileges of the
invoker. When UAC is enabled, this is referred to as a user. To allow the application to self-elevate, the
developer must create an Application Manifest.

Creating the Application Manifest in Visual Basic .NET (VB.NET)
In Visual Basic .NET, the Application Manifest is generated through the user interface.

1. In the Solution Explorer, right-click on the project and then select Properties. Then, open the
Application tab.

2. Next, click View Windows Settings.

The Application Manifest will be generated and opened in the Project View.

Creating an Application Manifest in C-Sharp (C#)
In C-Sharp, the Application Manifest is generated through the menu.

1. In the Solution Explorer, right-click on the project and then select Add.

2. Next, select New Item.

3. In Add New Item, select Application Manifest file. Then, click Add.

The Application Manifest will be generated and opened in the Project View.

Editing the Application Manifest
The Application Manifest is an XML-formatted file. When it is generated, the "requestedExecutionLevel" is
set to "asInvoker" by default. On systems where the invoker is an Administrator, the application can usually
run after changing the setting to "highestAvailable". In some cases, other aspects of the project may require
the setting "requireAdministrator". It is recommended that users edit the Application Manifest according to
the needs of the project.

www.ptc.com

160

ClientAce

www.ptc.com

161

ClientAce

Index

A

AccessRights Enumerated Values 43

Adding a ChannelSetting Control 128

Adding a ServerBrowser Control 124

Adding a ServerState Control 132

Adding an ItemBrowser Control 116

Additional Controls 111

Appendix 158

Applying ClientAce 136

ASP .NET Development Incompatibility 144

B

Browse Method 52

BrowseFilter Enumeration 40

C

Class BrowseElement 30

ClientAce .NET API Assembly 9

ClientAceDA_Junction 90

ClsidFromProgID Method 23

CoInitializeSecurity 144

ConnectInfo Class 30

Converting Visual Studio 2008 to Visual Studio 2010 150

D

DA Junction Configuration Window 92

DaServerMgt Class 33

DaServerMgt Object 43

Data Types Description 134

DataChanged Event 44

Deconstructing the OPC Quality Field 158

Deploying a Client Application 140

www.ptc.com

162

ClientAce

Disabling DataChange While the Control has focus 109

Disconnect Method 61

E

EndPointIdentifier Class 9

EnumComServer Method 24

F

fromDER Method 12

fromWindowsStore Method 16

fromWindowsStoreWithPrivateKey Method 19

G

Get Properties Method 61

getCertificateForEndpoint Method 26

getEndpoints Method 28

GetProperties 61

I

IsConnected Property 89

Item Update Rate 107

ItemBrowser Control Properties 111

ItemIdentifier Class 33

ItemProperty Class 34

ItemResultCallback Class 34

ItemValue Class 34

ItemValueCallback Class 35

K

KEPServerEX Controls 127

Kepware.ClientAce.OpcDaClient Namespace 29

www.ptc.com

163

ClientAce

L

Licensing ClientAce 136

M

Microsoft Visual Studio Environment Configuration 150

Missing Controls 151

N

NodeType Enumerated Values 121

O

OpcDaItem Class 120

OpcServerEnum Object 22

OPCType Enumerated Values 126

OPCUrl Class 127

Overview 5

P

PkiCertificate Class 10

Project Setup 92

Property ID Enumeration 40

Q

QualityID Class 36

R

Read Method 63

ReadAsync Method 69

ReadCompleted Event 46

Referencing Controls 156

www.ptc.com

164

ClientAce

Removing Blank Toolbar Options after Uninstalling ClientAce (VS 2005) 156

ResultID Class 37

ReturnCode Enumeration 42

Runtime Requirements 8

S

Sample Project Using C# or VB.NET 97

ServerBrowser Control Properties 121

ServerCategory Enumeration 22

ServerIdentifier Class 21

ServerState Enumeration 42

ServerState Property 89

ServerStateChanged Event 49

Signing a Client Application 138

Subscribe Method 72

SubscriptionAddItems Method 77

SubscriptionCancel Method 79

SubscriptionModify Method 75

SubscriptionRemoveItems Method 80

System and Application Requirements 6

T

toDER Method 11

toWindowsStore Method 13

toWindowsStoreWithPrivateKey Method 15

Troubleshooting 144

U

UAC Self Elevation 160

Upgrading ClientAce 138

UserIdentityToken Class 39

UserIdentityTokenCertificate Class 40

UserIdentityTokenIssuedToken Class 40

UserIdentityTokenUserPassword Class 40

UserTokenType Enumeration 42

www.ptc.com

165

ClientAce

V

Visual Studio 2003 and Visual Studio 2005 (.NET 2.0.0.x Assemblies) 140

Visual Studio 2008 (.NET 3.5.0.x Assemblies) 141

Visual Studio 2008, 2010, and 2012 157

Visual Studio 2010, 2012, and 2013 (.NET 4.0.2.x Assemblies) 142

W

WinStoreLocation Enumeration 22

Write Method 82

WriteAsync Method 87

WriteCompleted Event 50

www.ptc.com

166

	ClientAce User Manual
	Table of Contents
	Contents
	Overview

	System and Application Requirements
	Runtime Requirements

	ClientAce .NET API Assembly
	EndPointIdentifier Class
	PkiCertificate Class
	toDER Method
	fromDER Method
	toWindowsStore Method
	toWindowsStoreWithPrivateKey Method
	fromWindowsStore Method
	fromWindowsStoreWithPrivateKey Method

	ServerIdentifier Class
	ServerCategory Enumeration
	WinStoreLocation Enumeration
	OpcServerEnum Object
	ClsidFromProgID Method
	EnumComServer Method
	getCertificateForEndpoint Method
	getEndpoints Method

	Kepware.ClientAce.OpcDaClient Namespace
	BrowseElement Class
	ConnectInfo Class
	DaServerMgt Class
	ItemIdentifier Class
	ItemResultCallback Class
	ItemProperty Class
	ItemValue Class
	ItemValueCallback Class
	QualityID Class
	ResultID Class
	UserIdentityToken Class
	UserIdentityTokenCertificate Class
	UserIdentityTokenIssuedToken Class
	UserIdentityTokenUserPassword Class
	BrowseFilter Enumeration
	Property ID Enumeration
	ServerState Enumeration
	ReturnCode Enumeration
	UserTokenType Enumeration

	DaServerMgt Object
	AccessRights Enumerated Values
	DataChanged Event
	ReadCompleted Event
	ServerStateChanged Event
	WriteCompleted Event
	Browse Method
	Connect Method
	Disconnect Method
	Get Properties Method
	Read Method
	ReadAsync Method
	Subscribe Method
	SubscriptionModify Method
	SubscriptionAddItems Method
	SubscriptionCancel Method
	SubscriptionRemoveItems Method
	Write Method
	WriteAsync Method
	IsConnected Property
	ServerState Property

	ClientAceDA_Junction
	Project Setup
	DA Junction Configuration Window
	A Sample Project Using DA Junction with VB.NET or C#
	Item Update Rate
	Disabling DataChange While the Control Has Focus

	Additional Controls
	ItemBrowser Control Properties
	Adding an ItemBrowser Control
	OpcDaItem Class
	NodeType Enumerated Values

	ServerBrowser Control Properties
	Adding a ServerBrowser Control
	OPCType Enumerated Values

	OPCUrl Class
	KEPServerEX Controls
	Adding a ChannelSetting Control
	Adding a ServerState Control

	Data Types Description
	Applying ClientAce
	Licensing ClientAce
	Upgrading ClientAce
	Signing a Client Application
	Deploying a Client Application
	Visual Studio 2003 and Visual Studio 2005 (.NET 2.0.0.x Assemblies)
	Visual Studio 2008 (.NET 3.5.0.x Assemblies)
	Visual Studio 2010, 2012, and 2013 (.NET 4.0.2.x Assemblies)

	Troubleshooting
	ASP .NET Development Incompatibility
	CoInitializeSecurity
	Converting Visual Studio 2008 to Visual Studio 2010
	Microsoft Visual Studio Environment Configuration
	Missing Controls
	Referencing Controls
	Removing Blank Toolbar Options after Uninstalling ClientAce (VS 2005)
	Visual Studio 2008, 2010, 2012, and 2013

	Appendix
	Deconstructing the OPC Quality Field
	UAC Self Elevation

	Index

